[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Shi et al., 2019 - Google Patents

Deep Attention Gated Dilated Temporal Convolutional Networks with Intra-Parallel Convolutional Modules for End-to-End Monaural Speech Separation.

Shi et al., 2019

View PDF
Document ID
16037643961142747040
Author
Shi Z
Lin H
Liu L
Liu R
Han J
Shi A
Publication year
Publication venue
Interspeech

External Links

Snippet

Monaural speech separation techniques are far from satisfactory and are a challenging task due to interference from multiple sources. Recently the deep dilated temporal convolutional networks (TCN) has proven to be very effective in sequence modeling. This work explores …
Continue reading at www.isca-archive.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L2021/02161Number of inputs available containing the signal or the noise to be suppressed
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/14Speech classification or search using statistical models, e.g. hidden Markov models [HMMs]
    • G10L15/142Hidden Markov Models [HMMs]
    • G10L15/144Training of HMMs
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/08Speech classification or search
    • G10L15/18Speech classification or search using natural language modelling
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/06Creation of reference templates; Training of speech recognition systems, e.g. adaptation to the characteristics of the speaker's voice
    • G10L15/065Adaptation
    • G10L15/07Adaptation to the speaker
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis using predictive techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/02Feature extraction for speech recognition; Selection of recognition unit
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/003Changing voice quality, e.g. pitch or formants
    • G10L21/007Changing voice quality, e.g. pitch or formants characterised by the process used
    • G10L21/013Adapting to target pitch
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification
    • G10L17/04Training, enrolment or model building
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/20Speech recognition techniques specially adapted for robustness in adverse environments, e.g. in noise, of stress induced speech
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
    • G10L25/27Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the analysis technique
    • G10L25/30Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 characterised by the analysis technique using neural networks
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L17/00Speaker identification or verification
    • G10L17/26Recognition of special voice characteristics, e.g. for use in lie detectors; Recognition of animal voices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00
    • G10L25/48Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use
    • G10L25/51Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use for comparison or discrimination
    • G10L25/66Speech or voice analysis techniques not restricted to a single one of groups G10L15/00-G10L21/00 specially adapted for particular use for comparison or discrimination for extracting parameters related to health condition
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signal analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signal, using source filter models or psychoacoustic analysis
    • G10L19/008Multichannel audio signal coding or decoding, i.e. using interchannel correlation to reduce redundancies, e.g. joint-stereo, intensity-coding, matrixing

Similar Documents

Publication Publication Date Title
Shi et al. Deep Attention Gated Dilated Temporal Convolutional Networks with Intra-Parallel Convolutional Modules for End-to-End Monaural Speech Separation.
Zhang et al. FurcaNeXt: End-to-end monaural speech separation with dynamic gated dilated temporal convolutional networks
Kleijn et al. Generative speech coding with predictive variance regularization
Li et al. Speech enhancement using progressive learning-based convolutional recurrent neural network
Zhang et al. Deep learning for environmentally robust speech recognition: An overview of recent developments
Tan et al. Real-time speech enhancement using an efficient convolutional recurrent network for dual-microphone mobile phones in close-talk scenarios
CN111583954B (en) Speaker independent single-channel voice separation method
Yuliani et al. Speech enhancement using deep learning methods: A review
Shi et al. End-to-End Monaural Speech Separation with Multi-Scale Dynamic Weighted Gated Dilated Convolutional Pyramid Network.
Nie et al. Deep learning based speech separation via NMF-style reconstructions
Shi et al. FurcaNet: An end-to-end deep gated convolutional, long short-term memory, deep neural networks for single channel speech separation
Geng et al. End-to-end speech enhancement based on discrete cosine transform
Le et al. Inference skipping for more efficient real-time speech enhancement with parallel RNNs
Shi et al. Furcax: End-to-end monaural speech separation based on deep gated (de) convolutional neural networks with adversarial example training
Liu et al. Inplace gated convolutional recurrent neural network for dual-channel speech enhancement
CN118398033A (en) A speech-based emotion recognition method, system, device and storage medium
Fan et al. Utterance-level permutation invariant training with discriminative learning for single channel speech separation
Soni et al. State-of-the-art analysis of deep learning-based monaural speech source separation techniques
Chao et al. Cross-domain single-channel speech enhancement model with bi-projection fusion module for noise-robust ASR
Girirajan et al. Real-Time Speech Enhancement Based on Convolutional Recurrent Neural Network.
Yu et al. A novel target decoupling framework based on waveform-spectrum fusion network for monaural speech enhancement
Saleem et al. On improvement of speech intelligibility and quality: A survey of unsupervised single channel speech enhancement algorithms
Hepsiba et al. Enhancement of single channel speech quality and intelligibility in multiple noise conditions using wiener filter and deep CNN
Shi et al. Is CQT more suitable for monaural speech separation than STFT? An empirical study
Li et al. A Convolutional Neural Network with Non-Local Module for Speech Enhancement.