Neginhal et al., 2007 - Google Patents
Measuring bandwidth signatures of network pathsNeginhal et al., 2007
View PDF- Document ID
- 16088479803528347543
- Author
- Neginhal M
- Harfoush K
- Perros H
- Publication year
- Publication venue
- International Conference on Research in Networking
External Links
Snippet
In this paper, we propose a practical and efficient technique, Forecaster, to estimate (1) the end-to-end available bandwidth, and (2) the speed of the most congested (tight) link along an Internet path. Forecaster is practical since it does not assume any a priori knowledge …
- 239000000523 sample 0 abstract description 26
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
- H04L43/0864—Round trip delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0852—Delays
- H04L43/087—Jitter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0823—Errors
- H04L43/0829—Packet loss
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/08—Monitoring based on specific metrics
- H04L43/0876—Network utilization
- H04L43/0888—Throughput
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/26—Monitoring arrangements; Testing arrangements
- H04L12/2602—Monitoring arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/02—Details
- H04L12/26—Monitoring arrangements; Testing arrangements
- H04L12/2697—Testing equipment; Routine testing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5601—Transfer mode dependent, e.g. ATM
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/19—Flow control or congestion control at layers above network layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/12—Congestion avoidance or recovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/22—Traffic shaping
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/02—Arrangements for monitoring or testing packet switching networks involving a reduction of monitoring data
- H04L43/026—Arrangements for monitoring or testing packet switching networks involving a reduction of monitoring data using flow generation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L41/00—Arrangements for maintenance or administration or management of packet switching networks
- H04L41/14—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning
- H04L41/142—Arrangements for maintenance or administration or management of packet switching networks involving network analysis or design, e.g. simulation, network model or planning using statistical or mathematical methods
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic regulation in packet switching networks
- H04L47/10—Flow control or congestion control
- H04L47/32—Packet discarding or delaying
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/10—Arrangements for monitoring or testing packet switching networks using active monitoring, e.g. heartbeat protocols, polling, ping, trace-route
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/16—Arrangements for monitoring or testing packet switching networks using threshold monitoring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/50—Testing arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing packet switching networks
- H04L43/06—Report generation
- H04L43/062—Report generation for traffic related reporting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L49/00—Packet switching elements
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Katabi et al. | Inferring congestion sharing and path characteristics from packet interarrival times | |
Neginhal et al. | Measuring bandwidth signatures of network paths | |
Salcedo et al. | Available bandwidth estimation tools metrics, approaches and performance | |
Man et al. | Available bandwidth measurement via TCP connection | |
Man et al. | ImTCP: TCP with an inline measurement mechanism for available bandwidth | |
Feng et al. | Packet reordering in high-speed networks and its impact on high-speed TCP variants | |
Mitzenmacher et al. | Towards more complete models of tcp latency and throughput | |
Johnsson et al. | An analysis of active end-to-end bandwidth measurements in wireless networks | |
Salehin et al. | Combined methodology for measurement of available bandwidth and link capacity in wired packet networks | |
Kirova et al. | Optimization of probe train size for available bandwidth estimation in high-speed networks | |
Nam et al. | Analysis of minimal backlogging-based available bandwidth estimation mechanism | |
Pakzad et al. | Link capacity estimation in wireless software defined networks | |
Papadopoulos et al. | Efficient identification of uncongested Internet links for topology downscaling | |
Hei et al. | Model-based end-to-end available bandwidth inference using queueing analysis | |
Salehin et al. | COMPRESS: A self-sufficient scheme for measuring queueing delay on the Internet routers | |
Constantinescu et al. | Modeling of one-way transit time in IP routers | |
Machiraju et al. | A measurement-friendly network (MFN) architecture | |
Xu et al. | A bandwidth adaptive method for estimating end-to-end available bandwidth | |
Igai et al. | A simple estimation scheme for upper bound of link utilization based on RTT measurement | |
Lee | A path selection model considering path latency in the communication network with geographically correlated failures | |
Vuletić et al. | Self-similar cross-traffic analysis as a foundation for choosing among active available bandwidth measurement strategies | |
Abut | Through the diversity of bandwidth-related metrics, estimation techniques and tools: an overview | |
Kang et al. | On estimating tight-link bandwidth characteristics over multi-hop paths | |
Turrubiartes et al. | Analysis of IP network path capacity estimation using a variable packet size method | |
Popescu et al. | Measurement of one-way transit time in IP routers |