Stroet et al., 2017 - Google Patents
Optimization of empirical force fields by parameter space mapping: A single-step perturbation approachStroet et al., 2017
- Document ID
- 16077016334432325839
- Author
- Stroet M
- Koziara K
- Malde A
- Mark A
- Publication year
- Publication venue
- Journal of chemical theory and computation
External Links
Snippet
A general method for parametrizing atomic interaction functions is presented. The method is based on an analysis of surfaces corresponding to the difference between calculated and target data as a function of alternative combinations of parameters (parameter space …
- 238000005457 optimization 0 title description 30
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/16—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for molecular structure, e.g. structure alignment, structural or functional relations, protein folding, domain topologies, drug targeting using structure data, involving two-dimensional or three-dimensional structures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/706—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for drug design with the emphasis on a therapeutic agent, e.g. ligand-biological target interactions, pharmacophore generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/701—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for molecular modelling, e.g. calculation and theoretical details of quantum mechanics, molecular mechanics, molecular dynamics, Monte Carlo methods, conformational analysis or the like
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/704—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for prediction of properties of compounds, e.g. calculating and selecting molecular descriptors, details related to the development of SAR/QSAR/QSPR models, ADME/Tox models or PK/PD models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/708—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for data visualisation, e.g. molecular structure representations, graphics generation, display of maps or networks or other visual representations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/28—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for programming tools or database systems, e.g. ontologies, heterogeneous data integration, data warehousing or computing architectures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/705—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for database search of chemical structures, e.g. full structure search, substructure search, similarity search, pharmacophore search, 3D structure search
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/70—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds
- G06F19/703—Chemoinformatics, i.e. data processing methods or systems for the retrieval, analysis, visualisation, or storage of physicochemical or structural data of chemical compounds for computer-assisted identification of chemical compounds or molecular structures, e.g. computer-assisted structure elucidation [CASE] systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/12—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for modelling or simulation in systems biology, e.g. probabilistic or dynamic models, gene-regulatory networks, protein interaction networks or metabolic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/18—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for functional genomics or proteomics, e.g. genotype-phenotype associations, linkage disequilibrium, population genetics, binding site identification, mutagenesis, genotyping or genome annotation, protein-protein interactions or protein-nucleic acid interactions
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/22—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for sequence comparison involving nucleotides or amino acids, e.g. homology search, motif or SNP [Single-Nucleotide Polymorphism] discovery or sequence alignment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Stroet et al. | Automated topology builder version 3.0: Prediction of solvation free enthalpies in water and hexane | |
Böselt et al. | Machine learning in QM/MM molecular dynamics simulations of condensed-phase systems | |
Song et al. | Evolution of alchemical free energy methods in drug discovery | |
Cole et al. | Biomolecular force field parameterization via atoms-in-molecule electron density partitioning | |
Nebgen et al. | Transferable dynamic molecular charge assignment using deep neural networks | |
Stroet et al. | Optimization of empirical force fields by parameter space mapping: A single-step perturbation approach | |
Giese et al. | A GPU-accelerated parameter interpolation thermodynamic integration free energy method | |
Ustach et al. | Optimization and evaluation of site-identification by ligand competitive saturation (SILCS) as a tool for target-based ligand optimization | |
Lakkaraju et al. | Sampling of organic solutes in aqueous and heterogeneous environments using oscillating excess chemical potentials in grand canonical-like Monte Carlo-molecular dynamics simulations | |
Befort et al. | Machine learning directed optimization of classical molecular modeling force fields | |
Jambeck et al. | Update to the general amber force field for small solutes with an emphasis on free energies of hydration | |
Wang et al. | Development of polarizable models for molecular mechanical calculations. 4. van der Waals parametrization | |
Lin et al. | Polarizable empirical force field for halogen-containing compounds based on the classical Drude oscillator | |
Visscher et al. | Deriving force-field parameters from first principles using a polarizable and higher order dispersion model | |
Calabrò et al. | Elucidation of nonadditive effects in protein–ligand binding energies: Thrombin as a case study | |
Samways et al. | grand: a Python module for grand canonical water sampling in OpenMM | |
He et al. | Recent progress in general force fields of small molecules | |
Reinisch et al. | Benchmarking different QM levels for usage with COSMO-RS | |
Oliveira et al. | Systematic optimization of a fragment-based force field against experimental pure-liquid properties considering large compound families: Application to saturated haloalkanes | |
Boothroyd et al. | Open force field evaluator: An automated, efficient, and scalable framework for the estimation of physical properties from molecular simulation | |
Nunes et al. | Biomolecular simulations of halogen bonds with a GROMOS force field | |
Lin et al. | Improved modeling of halogenated ligand–protein interactions using the Drude polarizable and CHARMM additive empirical force fields | |
Sweere et al. | Accuracy test of the OPLS-AA force field for calculating free energies of mixing and comparison with PAC-MAC | |
Hédin et al. | A toolkit to fit nonbonded parameters from and for condensed phase simulations | |
Green et al. | Theoretical prediction of hydrogen-bond basicity p K BHX using quantum chemical topology descriptors |