[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zheng et al., 2015 - Google Patents

Silicon interposer with embedded microfluidic cooling for high-performance computing systems

Zheng et al., 2015

View PDF
Document ID
15815703566649243093
Author
Zheng L
Zhang Y
Zhang X
Bakir M
Publication year
Publication venue
2015 IEEE 65th Electronic Components and Technology Conference (ECTC)

External Links

Snippet

A silicon interposer platform utilizing microfluidic cooling is proposed to address the off-chip signaling and cooling challenges facing future high-performance computing systems. A test vehicle with microfluidic I/Os and a micropin-fin heat sink was used to evaluate microfluidic …
Continue reading at scholar.archive.org (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2225/00Details relating to assemblies covered by the group H01L25/00 but not provided for in its subgroups
    • H01L2225/03All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00
    • H01L2225/04All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers
    • H01L2225/065All the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00 the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L2225/06503Stacked arrangements of devices
    • H01L2225/06513Bump or bump-like direct electrical connections between devices, e.g. flip-chip connection, solder bumps
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process

Similar Documents

Publication Publication Date Title
Zhang et al. Embedded cooling method with configurability and replaceability for multi-chip electronic devices
Wei et al. Experimental and numerical investigation of direct liquid jet impinging cooling using 3D printed manifolds on lidded and lidless packages for 2.5 D integrated systems
CN113257757B (en) A kind of silicon-based fan-out package structure and preparation method thereof
Chainer et al. Improving data center energy efficiency with advanced thermal management
Zhang et al. 3D stacked microfluidic cooling for high-performance 3D ICs
Sekar et al. A 3D-IC technology with integrated microchannel cooling
Zheng et al. Silicon interposer with embedded microfluidic cooling for high-performance computing systems
CN102148207A (en) Direct liquid-contact micro-channel heat transfer devices, methods of temperature control for semiconductive devices, and processes of forming same
US20130112377A1 (en) Heat-dissipating device and heat-dissipating system
Brunschwiler et al. Heat-removal performance scaling of interlayer cooled chip stacks
Zhang et al. 3-D stacked tier-specific microfluidic cooling for heterogeneous 3-D ICs
Dang et al. Integration and packaging of embedded radial micro-channels for 3D chip cooling
Sarvey et al. Microfluidic cooling of a 14-nm 2.5-D FPGA with 3-D printed manifolds for high-density computing: Design considerations, fabrication, and electrical characterization
Zheng et al. A silicon interposer platform utilizing microfluidic cooling for high-performance computing systems
Brunschwiler et al. Validation of the porous-medium approach to model interlayer-cooled 3D-chip stacks
Madhour et al. Modeling of two-phase evaporative heat transfer in three-dimensional multicavity high performance microprocessor chip stacks
Oprins et al. Liquid jet impingement cooling of high-performance interposer packages: a hybrid CFD–FEM modeling study
Zhang et al. Thermal isolation using air gap and mechanically flexible interconnects for heterogeneous 3-D ICs
Wang et al. Experimental investigation of heat transfer performance for a novel microchannel heat sink
Li et al. Embedded cooling of high-heat-flux hotspots using self-adaptive microchannel/pin-fin hybrid heat sink
Bergendahl et al. Integrated Stacked Silicon Microcoolers
Zheng et al. Design, fabrication and assembly of a novel electrical and microfluidic I/Os for 3-D chip stack and silicon interposer
Furumi et al. Cooling architectures using thermal sidewalls, interchip plates, and bottom plate for 3D ICs
Ozsun et al. Thermal performance of a silicon-interposer with embedded fluid channels enabling dual-side heat removal
Zhang et al. Embedded microchannel cooler with manifold for IC chips