Lee et al., 2012 - Google Patents
Operation scheme for a wind farm to mitigate output power variationLee et al., 2012
View PDF- Document ID
- 15869486396825273338
- Author
- Lee S
- Won D
- Chung I
- Publication year
- Publication venue
- Journal of Electrical Engineering and Technology
External Links
Snippet
Because of the nature of wind, the output power of wind turbines fluctuates according to wind speed variation. Therefore, many countries have set up wind-turbine interconnection standards usually named as Grid-Code to regulate the output power of wind farms to …
- 238000004088 simulation 0 abstract description 12
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
- Y02E10/763—Power conversion electric or electronic aspects for grid-connected applications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
- Y02E10/723—Control of turbines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/76—Power conversion electric or electronic aspects
- Y02E10/766—Power conversion electric or electronic aspects concerning power management inside the plant, e.g. battery charging/discharging, economical operation, hybridisation with other energy sources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
- Y02E10/722—Components or gearbox
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
- Y02E10/725—Generator or configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
- H02J3/382—Dispersed generators the generators exploiting renewable energy
- H02J3/386—Wind energy
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially in wind direction
- F03D7/04—Automatic control; Regulation
- F03D7/042—Automatic control; Regulation by means of an electrical or electronic controller
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/28—Arrangements for balancing of the load in a network by storage of energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D7/00—Controlling wind motors
- F03D7/02—Controlling wind motors the wind motors having rotation axis substantially in wind direction
- F03D7/028—Controlling motor output power
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Dynamic load frequency control for high-penetration wind power considering wind turbine fatigue load | |
Dang et al. | SOC feedback control for wind and ESS hybrid power system frequency regulation | |
Keung et al. | Kinetic energy of wind-turbine generators for system frequency support | |
Hu et al. | Approximation to frequency control capability of a DFIG-based wind farm using a simple linear gain droop control | |
Kim et al. | Power smoothing of a variable-speed wind turbine generator in association with the rotor-speed-dependent gain | |
DK2824791T3 (en) | Method and system for limiting output power deviation in variable renewable generating plants | |
TWI543492B (en) | Method for feeding electrical energy into an electrical supply grid by means of a wind power installation or wind farm, and wind power installation and wind farm for feeding electrical energy into an electrical supply grid | |
CN107453410A (en) | The double-fed blower fan of load disturbance participates in wind bavin microgrid frequency modulation control method | |
Li et al. | Variable utilization-level scheme for load-sharing control of wind farm | |
Yoo et al. | Frequency stability support of a DFIG to improve the settling frequency | |
Lee et al. | Operation scheme for a wind farm to mitigate output power variation | |
França et al. | Wind and photovoltaic power generation integrated to power grid through dc link and synchronverter | |
EP4128469A1 (en) | A method for improved power ramping in a hybrid power plant | |
An et al. | Modeling and voltage-control of variable-speed SCAG-based wind farm | |
Rosyadi et al. | Stabilization of fixed speed wind generator by using variable speed PM wind generator in multi-machine power system | |
Xi et al. | Adaptive VSG control scheme for large scale wind farms to improve frequency response characteristics | |
CN115800296A (en) | Voltage frequency cooperative supporting method for open sea wind power through VSC-MTDC grid-connected system | |
Varzaneh et al. | Constant power control of variable speed wind farm for primary frequency control support | |
Wang et al. | An optimal over-frequency droop control for DFIG-based wind farm under unreliable communication | |
Vaidya et al. | Enabling wind power plants with frequency and voltage regulation capability by forced curtailment | |
Uehara et al. | Study on optimum operation planning of wind farm/battery system using forecasted power data | |
Palariya et al. | Modelling, control and simulation of MPPT for wind energy conversion using Matlab/Simulink | |
Zhao et al. | A novel SoC feedback control of ESS for frequency regulation of fractional frequency transmission system with offshore wind power | |
Rosyadi et al. | Damping load frequency in multi-area power system using wind farm cooperated Primary Load Frequency Control | |
Behara et al. | The Investigations of the Impacts of the Integration of Wind Energy into Distribution Network |