[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Zheng et al., 2021 - Google Patents

Research on predicting remaining useful life of equipment based on health index

Zheng et al., 2021

Document ID
1586486259408997826
Author
Zheng G
Wu L
Wen T
Zheng C
Wang C
Lin G
Publication year
Publication venue
2021 7th International Conference on Condition Monitoring of Machinery in Non-Stationary Operations (CMMNO)

External Links

Snippet

Intelligent maintenance strategies based on effective Remaining Useful Life (RUL) prediction can significantly reduce the waste of maintenance resources. In recent years, RUL prediction of equipment has been a hot topic and a huge challenge for many experts. In …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • G06N3/08Learning methods
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0259Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
    • G05B23/0275Fault isolation and identification, e.g. classify fault; estimate cause or root of failure
    • G05B23/0278Qualitative, e.g. if-then rules; Fuzzy logic; Lookup tables; Symptomatic search; FMEA
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • G06F17/5009Computer-aided design using simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
    • G05B13/027Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/02Knowledge representation
    • G06N5/022Knowledge engineering, knowledge acquisition
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B17/00Systems involving the use of models or simulators of said systems
    • G05B17/02Systems involving the use of models or simulators of said systems electric

Similar Documents

Publication Publication Date Title
CN116757534B (en) Intelligent refrigerator reliability analysis method based on neural training network
CN106951695B (en) Method and system for calculating residual service life of mechanical equipment under multiple working conditions
CN112785091B (en) Method for carrying out fault prediction and health management on oil field electric submersible pump
CN111539515B (en) Complex equipment maintenance decision method based on fault prediction
CN110232203B (en) Knowledge distillation optimization RNN short-term power failure prediction method, storage medium and equipment
CN113255848B (en) Water turbine cavitation sound signal identification method based on big data learning
CN112328588B (en) Industrial fault diagnosis unbalanced time sequence data expansion method
Lindemann et al. Anomaly detection and prediction in discrete manufacturing based on cooperative LSTM networks
CN106909756A (en) A kind of rolling bearing method for predicting residual useful life
CN114297918B (en) Aero-engine residual life prediction method based on full-attention depth network and dynamic ensemble learning
CN111340282B (en) DA-TCN-based method and system for estimating residual service life of equipment
CN113723010A (en) Bridge damage early warning method based on LSTM temperature-displacement correlation model
CN113110398B (en) Industrial process fault diagnosis method based on dynamic time consolidation and graph convolution network
CN118051827A (en) Power grid fault prediction method based on deep learning
CN113468720B (en) Service life prediction method for digital-analog linked random degradation equipment
CN108959498A (en) A kind of big data processing platform and its design method for health monitoring
CN113988210A (en) Method and device for restoring distorted data of structure monitoring sensor network and storage medium
CN115422687A (en) Service life prediction method of rolling bearing
CN117829822B (en) Power transformer fault early warning method and system
CN114880917A (en) Method and device for building health state model and predicting performance trend of pumped storage unit
Zheng et al. Research on predicting remaining useful life of equipment based on health index
Dang et al. seq2graph: Discovering dynamic non-linear dependencies from multivariate time series
CN117056678B (en) Machine pump equipment operation fault diagnosis method and device based on small sample
CN112560252A (en) Prediction method for residual life of aircraft engine
Luo et al. A novel method for remaining useful life prediction of roller bearings involving the discrepancy and similarity of degradation trajectories