Wang et al., 2019 - Google Patents
A new effective shift rule for M-sequencesWang et al., 2019
View PDF- Document ID
- 15851640504402133074
- Author
- Wang X
- Zhang L
- Jiang L
- Publication year
- Publication venue
- IEEE Access
External Links
Snippet
Pseudo-random sequences have been extensively used in design theory, coding theory, and cryptographic system. Pseudo-random sequences generator based on feedback shift register is an important component of a symmetric crypto-system, which is circuit equipment …
- 238000010276 construction 0 abstract description 6
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/08—Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
- H04L9/0816—Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/58—Random or pseudo-random number generators
- G06F7/582—Pseudo-random number generators
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/58—Random or pseudo-random number generators
- G06F7/588—Random number generators, i.e. based on natural stochastic processes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/06—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/84—Generating pulses having a predetermined statistical distribution of a parameter, e.g. random pulse generators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/12—Details relating to cryptographic hardware or logic circuitry
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/80—Wireless
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2209/00—Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
- H04L2209/08—Randomization, e.g. dummy operations or using noise
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/001—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication using chaotic signals
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K3/00—Circuits for generating electric pulses; Monostable, bistable or multistable circuits
- H03K3/02—Generators characterised by the type of circuit or by the means used for producing pulses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/32—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communication
- H04L9/30—Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/001—Modulated-carrier systems using chaotic signals
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lu et al. | Nonsingularity of Grain-like cascade FSRs via semi-tensor product | |
Tuncer | The implementation of chaos-based PUF designs in field programmable gate array | |
Li et al. | The properties of a class of linear FSRs and their applications to the construction of nonlinear FSRs | |
Mandal et al. | Cryptographically strong de Bruijn sequences with large periods | |
Zhong et al. | On minimum period of nonlinear feedback shift registers in grain-like structure | |
ES2523571T3 (en) | Chaotic sequence generator and corresponding generation system | |
Zaibi et al. | Efficient and secure chaotic S‐Box for wireless sensor network | |
Wang et al. | A new effective shift rule for M-sequences | |
CN105354008A (en) | Output circuit and output method of random number generator | |
Zhao et al. | A novel efficient S-box design algorithm based on a new chaotic map and permutation | |
Fan et al. | Effects of limited computational precision on the discrete chaotic sequences and the design of related solutions | |
Lai et al. | Multiscroll Chaos and Extreme Multistability of Memristive Chaotic System with Application to Image Encryption | |
Sriram et al. | Pseudorandom number generation derived from Josephson junction stimulated by Wien bridge oscillator embedded in the microcontroller | |
Liu et al. | A novel hypogenetic chaotic jerk system: Modeling, circuit implementation, and its application | |
Jiang | Weak grain-like structures | |
Kuleshova et al. | A Variant of the Algorithm for Generating Pseudo-random Binary Sequences Based on the Properties of Linear Cellular Automata | |
Mandal et al. | Generating good span n sequences using orthogonal functions in nonlinear feedback shift registers | |
Falih | A Pseudorandom Binary Generator Based on Chaotic Linear Feedback Shift Register | |
RoyChatterjee et al. | Study on S-box properties of convolution coder | |
Wang et al. | Cycle structure and adjacency graphs of a class of LFSRs and a new family of De Bruijn cycles | |
Alghurabi et al. | Using symmetric group to generate dynamic S-box | |
Kuznetsov et al. | Areas of Application for Nonlinear Shift Registers in PRS Generators | |
Yuan et al. | Further Investigations on Nonlinear Complexity of Periodic Binary Sequences | |
Mandal et al. | On ideal t-tuple distribution of filtering de Bruijn sequence generators | |
Zhou et al. | A new way to produce key streams based on chaotic sequences |