Xianhui et al., 1993 - Google Patents
Thermodynamic stability and superconductivity of the Bi–Sr–Ca (Y)–Cu–Li–O systemXianhui et al., 1993
- Document ID
- 15736612959215829794
- Author
- Xianhui C
- Chun L
- Bin L
- Yitai Q
- Liezhao C
- Zhaojia C
- Zuyao C
- Publication year
- Publication venue
- Journal of materials research
External Links
Snippet
In order to understand the effects of the thermodynamic stability on superconductivity, the thermodynamic stability of the Bi2Sr2CaCu2-xLixOy system and the Bi2Sr2YCu2-xLixOy system was studied. It is found that the broad ranges (0≤ x≤ 0.6) of solid solution may be …
- 229910006715 Li—O 0 title 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/775—High tc, above 30 k, superconducting material
- Y10S505/776—Containing transition metal oxide with rare earth or alkaline earth
- Y10S505/777—Lanthanum, e.g. La2Cu04
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L39/00—Devices using superconductivity; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L39/02—Details
- H01L39/12—Details characterised by the material
- H01L39/125—Ceramic materials
- H01L39/126—Ceramic materials comprising copper oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/45—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
- C04B35/4504—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
- C04B35/4508—Type 1-2-3
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/775—High tc, above 30 k, superconducting material
- Y10S505/776—Containing transition metal oxide with rare earth or alkaline earth
- Y10S505/782—Bismuth-, e.g. BiCaSrCuO
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L39/00—Devices using superconductivity; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L39/24—Processes or apparatus peculiar to the manufacture or treatment of devices provided for in H01L39/00 or of parts thereof
- H01L39/2419—Processes or apparatus peculiar to the manufacture or treatment of devices provided for in H01L39/00 or of parts thereof the superconducting material comprising copper oxide
- H01L39/2422—Processes for depositing or forming superconductor layers
- H01L39/2454—Processes for depositing or forming superconductor layers characterised by the substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/775—High tc, above 30 k, superconducting material
- Y10S505/784—Bismuth-, e.g. BaKBiO
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S505/00—Superconductor technology: apparatus, material, process
- Y10S505/725—Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
- Y10S505/733—Rapid solidification, e.g. quenching, gas-atomizing, melt-spinning, roller-quenching
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L39/00—Devices using superconductivity; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L39/22—Devices comprising a junction of dissimilar materials, e.g. Josephson-effect devices
- H01L39/223—Josephson-effect devices
- H01L39/225—Josephson-effect devices comprising high Tc ceramic materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G3/00—Compounds of copper
- C01G3/006—Compounds containing, besides copper, two or more other elements, with the exception of oxygen or hydrogen
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HUT52645A (en) | Method for making super-conducting substance with critical temperature of 90 kelvin grades | |
EP0423241B1 (en) | Process for making superconductors and their precursors | |
Lay | Formation of yttrium barium cuprate powder at low temperatures | |
EP0321184B1 (en) | Metal oxide material | |
US5140000A (en) | Metal oxide 247 superconducting materials | |
Xianhui et al. | Thermodynamic stability and superconductivity of the Bi–Sr–Ca (Y)–Cu–Li–O system | |
Fu et al. | Properties of a new copper ternary compound La2Sr6Cu8O18− δ | |
US6855670B1 (en) | Superconducting bismuth-strontium-calcium-copper oxide compositions and process for manufacture | |
Masakazu et al. | Synthesis of bulk superconductors RBa2Cu4O8 (R= Tm, Er, Ho, Y, Dy and Gd) by a simple solid-state reaction method | |
Jinling et al. | Synthesis and superconductivity of Nd0. 7Sr1. 3Cu (O, F) 4− δ with Tc= 44 K | |
US5079217A (en) | Process for preparing homogenous superconductors by heating in a nitrogen dioxide containing atmosphere | |
JP2850310B2 (en) | Superconductive metal oxide composition and method for producing the same | |
Shrivastava | Synthesis of high-TC superconducting cuprate materials through solid state reaction route | |
EP0463506B1 (en) | Oxide superconductor and its manufacturing method | |
RU2044369C1 (en) | Process of manufacture of superconducting oxide material of system bi-sr-ca-cu(li)-0 | |
US7008906B2 (en) | Oxide high-critical temperature superconductor acicular crystal and its production method | |
EP0445138B1 (en) | Process for preparing homogeneous high temperature superconductors | |
US5457088A (en) | Process for the preparation of a semiconductor from an oxalate | |
CA2010615A1 (en) | Process for making superconducting metal oxide compositions | |
Meng et al. | Study of high-Tc superconductor (BiM)-Sr-Ca-Cu-O [M= Pb+ Ge, Pb+ Sn, Pb, etc.] | |
Maqsood et al. | Role of Pb substitution and a study of synthesizing procedure for Bi-based superconductors | |
Tallon et al. | Single-phase Bi2+ x (Ca, Sr) n+ 1 Cu n O2n+ 4+ δ, n= 0, 1, 2, 3 AND∞, and some substitutional DERIVATIVES | |
Akimitsu et al. | A new family of superconductors containing carbonate group | |
Lima et al. | Effect of 3d-metal sulfide doping on the superconducting properties of Bi-2212 superconductors | |
Prakash et al. | Phase dependent superconductivity in the Y-Ba-Cu-O system |