Kumar et al., 2019 - Google Patents
Fundamental limits of spectrum sharing for NOMA-based cooperative relaying under a peak interference constraintKumar et al., 2019
View PDF- Document ID
- 15748758968357551171
- Author
- Kumar V
- Cardiff B
- Flanagan M
- Publication year
- Publication venue
- IEEE Transactions on Communications
External Links
Snippet
Non-orthogonal multiple access (NOMA) and spectrum sharing (SS) are two emerging multiple access technologies for efficient spectrum utilization in future wireless communications standards. In this paper, we present the performance analysis of a NOMA …
- 238000001228 spectrum 0 title abstract description 24
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/12—Dynamic Wireless traffic scheduling; Dynamically scheduled allocation on shared channel
- H04W72/1205—Schedule definition, set-up or creation
- H04W72/1215—Schedule definition, set-up or creation for collaboration of different radio technologies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W52/00—Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC [Transmission power control]
- H04W52/18—TPC being performed according to specific parameters
- H04W52/24—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
- H04W52/243—TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W72/00—Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
- H04W72/04—Wireless resource allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/0202—Channel estimation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J11/00—Orthogonal multiplex systems, e.g. using WALSH codes
- H04J11/0023—Interference mitigation or co-ordination
- H04J11/005—Interference mitigation or co-ordination of intercell interference
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lv et al. | Secrecy-enhancing design for cooperative downlink and uplink NOMA with an untrusted relay | |
Ng et al. | Secure resource allocation and scheduling for OFDMA decode-and-forward relay networks | |
Kumar et al. | Fundamental limits of spectrum sharing for NOMA-based cooperative relaying under a peak interference constraint | |
Zheng et al. | Physical layer security in wireless ad hoc networks under a hybrid full-/half-duplex receiver deployment strategy | |
Ng et al. | Energy-efficient resource allocation for secure OFDMA systems | |
Zappone et al. | Energy efficiency in MIMO underlay and overlay device-to-device communications and cognitive radio systems | |
Wei et al. | Performance analysis of a hybrid downlink-uplink cooperative NOMA scheme | |
Lee et al. | Energy-efficient resource allocation for simultaneous information and energy transfer with imperfect channel estimation | |
Singh et al. | Overlay cognitive IoT-based full-duplex relaying NOMA systems with hardware imperfections | |
Yuan et al. | Analysis on secrecy capacity of cooperative non-orthogonal multiple access with proactive jamming | |
Hoang et al. | Outage probability and ergodic capacity of user clustering and beamforming MIMO-NOMA relay system with imperfect CSI over Nakagami-$ m $ fading channels | |
Abbasi et al. | Transmission scheme, detection and power allocation for uplink user cooperation with NOMA and RSMA | |
Zou | Intelligent interference exploitation for heterogeneous cellular networks against eavesdropping | |
Duan et al. | Two-stage superposed transmission for cooperative NOMA systems | |
Duy et al. | Performance Enhancement for Multihop Cognitive DF and AF Relaying Protocols under Joint Impact of Interference and Hardware Noises: NOMA for Primary Network and Best‐Path Selection for Secondary Network | |
Wang et al. | Stochastic geometric performance analyses for the cooperative NOMA with the full-duplex energy harvesting relaying | |
He et al. | Enhancing secrecy for NOMA untrusted relay networks with user scheduling and jamming | |
Kumar et al. | Performance Analysis of NOMA-Based Cooperative Relaying in alpha-µ Fading Channels | |
Kurma et al. | Adaptive AF/DF two-way relaying in FD multiuser URLLC system with user mobility | |
Khan et al. | Modulation based non-orthogonal multiple access for 5G resilient networks | |
Li et al. | Joint relay-and-antenna selection in NOMA relaying networks over Nakagami-m fading channels | |
Toka et al. | Performance analysis of OSTBC-NOMA system in the presence of practical impairments | |
Li et al. | Security optimization of cooperative NOMA networks with friendly jamming | |
Jamal et al. | A new approach to cooperative NOMA using distributed space time block coding | |
Sharma et al. | Performance analysis for user selection‐based downlink non‐orthogonal multiple access system over generalized fading channels |