[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Englar et al., 2005 - Google Patents

Experimental development and evaluation of pneumatic powered-lift super-STOL aircraft

Englar et al., 2005

View PDF
Document ID
15674385877741823675
Author
Englar R
Campbell B
Publication year
Publication venue
Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1

External Links

Snippet

The powered-lift Channel Wing concept has been combined with pneumatic Circulation Control aerodynamic and propulsive technology to generate a Pneumatic Channel Wing (PCW) configuration intended to have Super-STOL or VSTOL capability while eliminating …
Continue reading at ntrs.nasa.gov (PDF) (other versions)

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically
    • B64C29/0008Aircraft capable of landing or taking-off vertically having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/12Rotor drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLYING SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/16Aircraft characterised by the type or position of power plant of jet type
    • B64D27/18Aircraft characterised by the type or position of power plant of jet type within or attached to wing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/04Aircraft not otherwise provided for having multiple fuselages or tail booms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies
    • Y02T50/67Relevant aircraft propulsion technologies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air-flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air-flow over aircraft surfaces, not otherwise provided for by generating vortices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/34Adjustable control surfaces or members, e.g. rudders collapsing or retracting against or within other surfaces or other members
    • B64C9/36Adjustable control surfaces or members, e.g. rudders collapsing or retracting against or within other surfaces or other members the members being fuselages or nacelles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces and the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2700/00Codes corresponding to the former IdT classification
    • B64C2700/62Codes corresponding to the former IdT classification of class 62
    • B64C2700/6201Airplanes, helicopters, autogyros
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction

Similar Documents

Publication Publication Date Title
US20200407060A1 (en) Novel aircraft design using tandem wings and a distributed propulsion system
US5086993A (en) Airplane with variable-incidence wing
US8186617B2 (en) Aircraft having a lambda-box wing configuration
Johnson et al. Design and performance of lift-offset rotorcraft for short-haul missions
Moodie et al. Design of a cruise-efficient compound helicopter
US20210403155A1 (en) Vtol aircraft
USRE36487E (en) Airplane with variable-incidence wing
US20200354050A1 (en) Convertiplane
Englar et al. Development of pneumatic channel wing powered-lift advanced superSTOL aircraft
Englar et al. STOE potential of the circulation control wing for high-performance aircraft
CN110116802A (en) A kind of big loading small-sized unmanned aircraft of high universalizable
Rosenstein et al. Aerodynamic development of the V-22 tilt rotor
Russell et al. Conceptual design and performance analysis for a large civil compound helicopter
CN103754360A (en) Similar flying saucer type rotaplane
Armutcuoglu et al. Tilt duct vertical takeoff and landing uninhabited aerial vehicle concept design study
Englar et al. Experimental development and evaluation of pneumatic powered-lift super-STOL aircraft
EP4087779A1 (en) Vtol aircraft
Ransone An overview of experimental VSTOL aircraft and their contributions
Duda et al. Flight performance of lightweight gyroplanes
RU2706430C1 (en) Hybrid jet plane-helicopter
Deckert et al. Powered-lift aircraft technology
Campbell Status of vstol research and development in the united states
Armutçuoğlu The conceptual design of a tilt-duct vtol uav
Wernicke Tilt proprotor composite aircraft, design state of the art
Olcott Tri-fan vtol conceptual design