[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Norby et al., 2015 - Google Patents

On the development of proton ceramic fuel cells based on Ca-doped LaNbO4 as electrolyte

Norby et al., 2015

View PDF
Document ID
15670636620805013541
Author
Norby T
Magrasó A
Publication year
Publication venue
Journal of power sources

External Links

Snippet

We review the key properties of Ca-doped LaNbO 4 (LCNO) and related materials for use as proton conducting electrolyte, from the discovery of its proton conductivity, through developments of synthesis and production, anodes and cathodes, to demonstrations of it in …
Continue reading at drive.google.com (PDF) (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/521Proton Exchange Membrane Fuel Cells [PEMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • Y02E60/52Fuel cells characterised by type or design
    • Y02E60/525Solid Oxide Fuel Cells [SOFC]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/144Fuel cells with fused electrolytes characterised by the electrolyte material
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte

Similar Documents

Publication Publication Date Title
Norby et al. On the development of proton ceramic fuel cells based on Ca-doped LaNbO4 as electrolyte
Bi et al. Solid oxide fuel cells with proton-conducting La0. 99Ca0. 01NbO4 electrolyte
Dai et al. Electrochemical performance of protonic ceramic fuel cells with stable BaZrO3-based electrolyte: A mini-review
Chen et al. Densification and electrical conducting behavior of BaZr0. 9Y0. 1O3-δ proton conducting ceramics with NiO additive
Tao et al. High-performing proton-conducting solid oxide fuel cells with triple-conducting cathode of Pr0. 5Ba0. 5 (Co0. 7Fe0. 3) O3-δ tailored with W
Dai et al. Tailoring cathode composite boosts the performance of proton-conducting SOFCs fabricated by a one-step co-firing method
Li et al. Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells
Zhao et al. Synthesis, characterization and evaluation of PrBaCo2− xFexO5+ δ as cathodes for intermediate-temperature solid oxide fuel cells
Shao et al. Intermediate-temperature solid oxide fuel cells
Wang et al. Liquid-phase synthesis of SrCo0. 9Nb0. 1O3-δ cathode material for proton-conducting solid oxide fuel cells
Yoo et al. Investigation of layered perovskite type NdBa1− xSrxCo2O5+ δ (x= 0, 0.25, 0.5, 0.75, and 1.0) cathodes for intermediate-temperature solid oxide fuel cells
Xie et al. Synthesis and electrical properties of Al-doped Sr2MgMoO6-δ as an anode material for solid oxide fuel cells
Somekawa et al. Physicochemical properties of Ba (Zr, Ce) O3-δ-based proton-conducting electrolytes for solid oxide fuel cells in terms of chemical stability and electrochemical performance
Kim et al. Layered NdBaCo2− xNixO5+ δ perovskite oxides as cathodes for intermediate temperature solid oxide fuel cells
Fabbri et al. Low-temperature solid-oxide fuel cells based on proton-conducting electrolytes
Tao et al. A stable La1. 95Ca0. 05Ce2O7− δ as the electrolyte for intermediate-temperature solid oxide fuel cells
Lee et al. Simultaneous A-and B-site substituted double perovskite (AA’B2O5+ δ) as a new high-performance and redox-stable anode material for solid oxide fuel cells
Zhang et al. Acceptor-doped La1. 9M0. 1Ce2O7 (M= Nd, Sm, Dy, Y, In) proton ceramics and in-situ formed electron-blocking layer for solid oxide fuel cells applications
Khan et al. Comparative study of the nano-composite electrolytes based on samaria-doped ceria for low temperature solid oxide fuel cells (LT-SOFCs)
Zhu et al. Investigation on samarium and yttrium co-doping barium zirconate proton conductors for protonic ceramic fuel cells
Yao et al. Investigation of layered perovskite NdBa0. 5Sr0. 25Ca0. 25Co2O5+ δ as cathode for solid oxide fuel cells
Liu et al. Composite ceramic cathode La0. 9Ca0. 1Fe0. 9Nb0. 1O3-δ/Sc0. 2Zr0. 8O2− δ towards efficient carbon dioxide electrolysis in zirconia-based high temperature electrolyser
Tao et al. A strategy of tailoring stable electrolyte material for high performance proton-conducting solid oxide fuel cells (SOFCs)
Qian et al. Chemically stable BaZr0. 7Pr0. 1Y0. 2O3-δ-BaCe0. 8Y0. 2O3-δ bilayer electrolyte for intermediate temperature solid oxide fuel cells
Lü et al. PrBa0. 5Sr0. 5Co2O5+ x as cathode material based on LSGM and GDC electrolyte for intermediate-temperature solid oxide fuel cells