Shen et al., 2023 - Google Patents
Molecular regulated polymer electrolytes for solid-state lithium metal batteries: Mechanisms and future prospectsShen et al., 2023
- Document ID
- 15508241988200061749
- Author
- Shen M
- Wang Z
- Cheng D
- Cheng H
- Xu H
- Huang Y
- Publication year
- Publication venue
- ETransportation
External Links
Snippet
Solid polymer electrolytes (SPEs) have been widely adopted in solid-state lithium metal batteries (SSLMBs) recently due to their excellent flexibility, superior processability and outstanding safety. However, balancing excellent ionic conductivity and mechanical …
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
- H01M4/602—Polymers
- H01M4/606—Polymers containing aromatic main chain polymers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2/00—Constructional details or processes of manufacture of the non-active parts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects | |
Yin et al. | Recent advances and perspectives on the polymer electrolytes for sodium/potassium‐ion batteries | |
Li et al. | Electrolytes in organic batteries | |
Reinoso et al. | Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications | |
Xi et al. | Polymer‐based solid electrolytes: material selection, design, and application | |
Ma et al. | Designing weakly solvating solid main-chain fluoropolymer electrolytes: synergistically enhancing stability toward Li anodes and high-voltage cathodes | |
Qian et al. | Research progress on gel polymer electrolytes for lithium-sulfur batteries | |
Shen et al. | Molecular regulated polymer electrolytes for solid-state lithium metal batteries: Mechanisms and future prospects | |
Lopez et al. | Designing polymers for advanced battery chemistries | |
Zhao et al. | Design strategies for polymer electrolytes with ether and carbonate groups for solid-state lithium metal batteries | |
Ahmed et al. | Remarkable conductivity of a self-healing single-ion conducting polymer electrolyte, poly (ethylene-co-acrylic lithium (fluoro sulfonyl) imide), for all-solid-state Li-ion batteries | |
Irfan et al. | Recent advances in high performance conducting solid polymer electrolytes for lithium-ion batteries | |
Castillo et al. | Perspective of polymer-based solid-state Li-S batteries | |
Hsu et al. | Free-standing polymer electrolyte for all-solid-state lithium batteries operated at room temperature | |
Li et al. | Fabrication of asymmetric bilayer solid-state electrolyte with boosted ion transport enabled by charge-rich space charge layer for‐20~ 70° C lithium metal battery | |
Kang et al. | Multiscale polymeric materials for advanced lithium battery applications | |
Zeng et al. | Recent advances in nanostructured electrode-electrolyte design for safe and next-generation electrochemical energy storage | |
Dai et al. | Organoboron‐Containing Polymer Electrolytes for High‐Performance Lithium Batteries | |
Qiu et al. | A high efficiency electrolyte enables robust inorganic–organic solid electrolyte interfaces for fast Li metal anode | |
Yu et al. | Lithium salt-induced in situ living radical polymerizations enable polymer electrolytes for lithium-ion batteries | |
Li et al. | In-situ construction of stable cathode/Li interfaces simultaneously via different electron density azo compounds for solid-state lithium metal batteries | |
Zuo et al. | Fabrication of elastic cyclodextrin-based triblock polymer electrolytes for all-solid-state lithium metal batteries | |
Jia et al. | In-situ polymerized PEO-based solid electrolytes contribute better Li metal batteries: Challenges, strategies, and perspectives | |
Lv et al. | Flame-retardant solid polymer electrolyte based on phosphorus-containing polyurethane acrylate/succinonitrile for lithium-ion batteries | |
Zhou et al. | Cyclotriphosphazene-based flame-retardant polymer electrolytes for high performance sodium metal batteries |