[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Wang et al., 2022 - Google Patents

FACCU: Enable fast accumulation for high-speed DSP systems

Wang et al., 2022

Document ID
15424996358186374470
Author
Wang M
Cheng X
Zou D
Wang Z
Publication year
Publication venue
IEEE Transactions on Circuits and Systems II: Express Briefs

External Links

Snippet

A number of fast accumulation (FACCU) designs are proposed for one of the essential components in DSP systems, the accumulator, to largely boost the DSP's maximum attainable processing speed. By leveraging the unique features of the accumulator, the loop …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/533Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
    • G06F7/5334Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product
    • G06F7/5336Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product overlapped, i.e. with successive bitgroups sharing one or more bits being recoded into signed digit representation, e.g. using the Modified Booth Algorithm
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/505Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
    • G06F7/506Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination with simultaneous carry generation for, or propagation over, two or more stages
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/52Multiplying; Dividing
    • G06F7/523Multiplying only
    • G06F7/53Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
    • G06F7/5318Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel with column wise addition of partial products, e.g. using Wallace tree, Dadda counters
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • G06F7/5443Sum of products
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/499Denomination or exception handling, e.g. rounding, overflow
    • G06F7/49994Sign extension
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/57Arithmetic logic units [ALU], i.e. arrangements or devices for performing two or more of the operations covered by groups G06F7/483 - G06F7/556 or for performing logical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F9/00Arrangements for programme control, e.g. control unit
    • G06F9/06Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
    • G06F9/30Arrangements for executing machine-instructions, e.g. instruction decode
    • G06F9/30003Arrangements for executing specific machine instructions
    • G06F9/30007Arrangements for executing specific machine instructions to perform operations on data operands
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Similar Documents

Publication Publication Date Title
Mao et al. A configurable floating-point multiple-precision processing element for HPC and AI converged computing
Soniya A review of different type of multipliers and multiplier-accumulator unit
Junjie et al. Implementation of DFT application on ternary optical computer
Tan et al. Multiple-mode-supporting floating-point FMA unit for deep learning processors
Wang et al. FACCU: Enable fast accumulation for high-speed DSP systems
Zahid et al. Energy-Efficient Approximate Booth Multipliers for Convolutional Neural Networks
Daud et al. Hybrid modified booth encoded algorithm-carry save adder fast multiplier
Haghi et al. O⁴-DNN: A Hybrid DSP-LUT-Based Processing Unit With Operation Packing and Out-of-Order Execution for Efficient Realization of Convolutional Neural Networks on FPGA Devices
Pawar et al. Review on multiply-accumulate unit
Luo et al. A single clock cycle approximate adder with hybrid prediction and error compensation methods
Tan et al. A Low-Cost Floating-Point Dot-Product-Dual-Accumulate Architecture for HPC-Enabled AI
Kaur et al. Implementation of modified booth multiplier using pipeline technique on FPGA
Sanjeevaiah et al. MF-RALU: design of an efficient multi-functional reversible arithmetic and logic unit for processor design on field programmable gate array platform.
Kwak et al. High-speed CORDIC based on an overlapped architecture and a novel σ-prediction method
Norollah et al. An efficient sorting architecture for area and energy constrained edge computing devices
Hsiao et al. Design of a low-cost floating-point programmable vertex processor for mobile graphics applications based on hybrid number system
BANDI RoBA Multiplier-Driven FIR Filter Synthesis: Uniting Efficiency and Speed for Enhanced Digital Signal Processing
SalehiTabrizi et al. Designing Efficient Two-Level Reverse Converters for Moduli Set {2^ 2n+ 1-1, 2^ 2n, 2^ n-1\} 2 2 n+ 1-1, 2 2 n, 2 n-1
Shavit et al. Programmable All-in-One 4x8-/2x16-/1x32-bits Dual Mode Logic Multiplier in 16 nm FinFET with Semi-Automatic Flow
Chopde et al. Design of a 4-Bit 4-Operand Adder Using Verilog: An Abstraction Analysis
Kurzum et al. Enhancing DNN Training Efficiency Via Dynamic Asymmetric Architecture
Shyamsunder et al. Design and Implementation of an Arithmetic Unit with Reduced Switching Activity
Fariddin et al. Design of High Speed and Area efficient modified Kogge Stone Multiplier Using ZFL
Raavi et al. Implementation of High-Speed Hybrid Carry Select Adder using Binary to Excess-1 Converter
Sharma et al. Design and Implementation of Braun Multiplier using Verilog