[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Jia et al., 2016 - Google Patents

Confined growth of Li 4 Ti 5 O 12 nanoparticles in nitrogen-doped mesoporous graphene fibers for high-performance lithium-ion battery anodes

Jia et al., 2016

Document ID
154203385050639314
Author
Jia X
Lu Y
Wei F
Publication year
Publication venue
Nano Research

External Links

Snippet

Nanomaterials with electrochemical activity are always suffering from aggregations, particularly during the high-temperature synthesis processes, which will lead to decreased energy-storage performance. Here, hierarchically structured lithium titanate/nitrogen-doped …
Continue reading at link.springer.com (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/13Ultracapacitors, supercapacitors, double-layer capacitors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B31/00Carbon; Compounds thereof
    • C01B31/02Preparation of carbon; Purification; After-treatment
    • C01B31/04Graphite, including modified graphite, e.g. graphitic oxides, intercalated graphite, expanded graphite or graphene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors [EDLCs]; Processes specially adapted for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their materials
    • H01G11/32Carbon-based, e.g. activated carbon materials
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes

Similar Documents

Publication Publication Date Title
Jia et al. Confined growth of Li 4 Ti 5 O 12 nanoparticles in nitrogen-doped mesoporous graphene fibers for high-performance lithium-ion battery anodes
Han et al. Electrosprayed porous Fe 3 O 4/carbon microspheres as anode materials for high-performance lithium-ion batteries
Sun et al. Novel porous starfish-like Co 3 O 4@ nitrogen-doped carbon as an advanced anode for lithium-ion batteries
Li et al. Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery
Qin et al. Graphene networks anchored with Sn@ graphene as lithium ion battery anode
Xiao et al. Nitrogen-doped graphene ribbons/MoS2 with ultrafast electron and ion transport for high-rate Li-ion batteries
Long et al. Synthesis of a nanowire self-assembled hierarchical ZnCo 2 O 4 shell/Ni current collector core as binder-free anodes for high-performance Li-ion batteries
Zhao et al. Ultrathin MoS 2 with expanded interlayers supported on hierarchical polypyrrole-derived amorphous N-doped carbon tubular structures for high-performance Li/Na-ion batteries
Li et al. Hydrothermal preparation of CoO/Ti3C2 composite material for lithium-ion batteries with enhanced electrochemical performance
Wang et al. Growth of 3D hierarchical porous NiO@ carbon nanoflakes on graphene sheets for high-performance lithium-ion batteries
Zou et al. Hydrothermally enhanced MnO/reduced graphite oxide composite anode materials for high performance lithium-ion batteries
Jia et al. Robust 3D network architectures of MnO nanoparticles bridged by ultrathin graphitic carbon for high-performance lithium-ion battery anodes
Wang et al. Hierarchical MOF-derived layered Fe3O4 QDs@ C imbedded on graphene sheets as a high-performance anode for Lithium-ion storage
Li et al. Hierarchical Fe 3 O 4@ C nanofoams derived from metal–organic frameworks for high-performance lithium storage
Yanuar et al. FeOF nanoparticles wrapped by graphitic carbon layers prepared from Fe-MIL-88B as a cathode material for sodium-ion batteries
Ding et al. Nitrogen-doped carbon coated MnO nanopeapods as superior anode materials for lithium ion batteries
Yang et al. Self-assembled FeF3 nanocrystals clusters confined in carbon nanocages for high-performance Li-ion battery cathode
Shen et al. Nitrogen-modified carbon nanostructures derived from metal-organic frameworks as high performance anodes for Li-ion batteries
Ma et al. Carbon nanocages@ ultrathin carbon nanosheets: One-step facile synthesis and application as anode material for lithium-ion batteries
Wang et al. Hierarchically Porous Carbon Nanofibers Encapsulating Carbon‐Coated Mini Hollow FeP Nanoparticles for High Performance Lithium and Sodium Ion Batteries
Huang et al. Bimetal-organic-framework derived CoTiO3 mesoporous micro-prisms anode for superior stable power sodium ion batteries
Liu et al. 3D nanoflower-like MoS2 grown on wheat straw cellulose carbon for lithium-ion battery anode material
Zhang et al. General and facile synthesis of hollow metal oxide nanoparticles coupled with graphene nanomesh architectures for highly efficient lithium storage
Park et al. A simple dip-coating approach for preparation of three-dimensional multilayered graphene-metal oxides hybrid nanostructures as high performance lithium-ion battery electrodes
Chen et al. Micro-nano Na3V2 (PO4) 3/C derived from metal-organic frameworks for high performance sodium ion batteries