Kim et al., 2003 - Google Patents
10 Gbps high power electro-absorption modulated laser monolithically integrated with a semiconductor optical amplifier for long-distance transmissionKim et al., 2003
- Document ID
- 15480555344407974315
- Author
- Kim J
- Kang B
- Publication year
- Publication venue
- Japanese journal of applied physics
External Links
Snippet
High average modulated output power over+ 3 dBm was obtained in 10 Gb/s electro- absorption modulated laser for transmission over 80 km by amplifying the modulated signals through a monolithically integrated semiconductor optical amplifier as a booster amplifier, for …
- 230000000051 modifying 0 title abstract description 41
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
- H01S5/0265—Intensity modulators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/0625—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in multi-section lasers
- H01S5/06255—Controlling the frequency of the radiation
- H01S5/06256—Controlling the frequency of the radiation with DBR-structure
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/504—Laser transmitters using direct modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back lasers (DFB-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/50—Amplifier structures not provided for in groups H01S5/02 - H01S5/30
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/04—Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
- H01S5/042—Electrical excitation; Circuits therefor
- H01S5/0427—Electrical excitation; Circuits therefor for applying modulation to the laser
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S3/00—Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S2301/00—Functional characteristics
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Watanabe et al. | Transmission performance of chirp-controlled signal by using semiconductor optical amplifier | |
Mason et al. | 40-Gb/s tandem electroabsorption modulator | |
US7245644B2 (en) | Semiconductor monolithic integrated optical transmitter | |
Takeuchi et al. | Very high-speed light-source module up to 40 Gb/s containing an MQW electroabsorption modulator integrated with a DFB laser | |
Aoki et al. | High-speed (10 Gbit/s) and low-drive-voltage (1 V peak to peak) InGaAs/InGaAsP MQW electroabsorption-modulator integrated DFB laser with semi-insulating buried heterostructure | |
Abbasi et al. | Direct and electroabsorption modulation of a III–V-on-silicon DFB laser at 56 Gb/s | |
Otsubo et al. | 1.3-$\mu $ m AlGaInAs Multiple-Quantum-Well Semi-insulating Buried-Heterostructure Distributed-Feedback Lasers for High-Speed Direct Modulation | |
Simoyama et al. | 50-Gbps direct modulation using 1.3-μm AlGaInAs MQW distribute-reflector lasers | |
Sato | Semiconductor light sources for 40-Gb/s transmission systems | |
Barnsley et al. | Wavelength conversion from 1.3 to 1.55 mu m using split contact optical amplifiers | |
Kimura et al. | Progress of coherent optical fibre communication systems | |
Takahashi et al. | High-power 25-Gb/s electroabsorption modulator integrated with a laser diode | |
Luo et al. | 2.5 Gb/s electroabsorption modulator integrated with partially gain-coupled distributed feedback laser fabricated using a very simple device structure | |
Kim et al. | 10 Gbps high power electro-absorption modulated laser monolithically integrated with a semiconductor optical amplifier for long-distance transmission | |
Kanno et al. | Chirp control of semiconductor laser by using hybrid modulation | |
Sasahata et al. | Tunable DFB laser array integrated with Mach–Zehnder modulators for 44.6 Gb/s DQPSK transmitter | |
Matsuo et al. | Extended transmission reach using optical filtering of frequency-modulated widely tunable SSG-DBR laser | |
Lal et al. | Performance optimization of an InP-based widely tunable all-optical wavelength converter operating at 40 Gb/s | |
CA2057374A1 (en) | Semiconductor optical amplifier with wideband electrical response | |
Chen et al. | Enhancement of optical-feedback tolerance of SOA-integrated EML (AXEL) by introducing DBR-type laser | |
Ishizaka et al. | Modulator integrated DFB lasers with more than 600-km transmission capability at 2.5 Gb/s | |
Ketelsen et al. | 2.5 Gb/s transmission over 680 km using a fully stabilized 20 channel DBR laser with monolithically integrated semiconductor optical amplifier, photodetector and electroabsorption modulator | |
Shahin et al. | Demonstration of 80 Gbps NRZ-OOK Electro-Absorption Modulation of InP-on-Si DFB Laser Diodes | |
Lau et al. | Effects of laser diode parameters on power penalty in 10 Gb/s optical fiber transmission systems | |
Johnson et al. | 10 Gb/s transmission using an electroabsorption-modulated distributed Bragg reflector laser with integrated semiconductor optical amplifier |