Gajdošík et al., 2021 - Google Patents
Security vulnerability analysis of OpenHIP and E-HIP protocolsGajdošík et al., 2021
- Document ID
- 15313188477949542702
- Author
- Gajdošík A
- Kaňuch P
- Publication year
- Publication venue
- 2021 44th International Conference on Telecommunications and Signal Processing (TSP)
External Links
Snippet
Internet of Things is made of many common devices, such as televisions, sensors, cars, and many others, which are connected. The greater number of devices, the greater possibility of being attacked by hackers, whose aim is to harm other users. Their reason for such an …
- 238000004891 communication 0 abstract description 15
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/1458—Denial of Service
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1425—Traffic logging, e.g. anomaly detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/145—Countermeasures against malicious traffic the attack involving the propagation of malware through the network, e.g. viruses, trojans or worms
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1416—Event detection, e.g. attack signature detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/1483—Countermeasures against malicious traffic service impersonation, e.g. phishing, pharming or web spoofing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/1466—Active attacks involving interception, injection, modification, spoofing of data unit addresses, e.g. hijacking, packet injection or TCP sequence number attacks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
- H04L63/1491—Countermeasures against malicious traffic using deception as countermeasure, e.g. honeypots, honeynets, decoys or entrapment
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1433—Vulnerability analysis
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/08—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network
- H04L63/083—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network using passwords
- H04L63/0838—Network architectures or network communication protocols for network security for supporting authentication of entities communicating through a packet data network using passwords using one-time-passwords
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/02—Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
- H04L63/0227—Filtering policies
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/02—Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
- H04L63/0209—Architectural arrangements, e.g. perimeter networks or demilitarized zones
- H04L63/0218—Distributed architectures, e.g. distributed firewalls
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/12—Applying verification of the received information
- H04L63/126—Applying verification of the received information the source of the received data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/10—Network architectures or network communication protocols for network security for controlling access to network resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/16—Implementing security features at a particular protocol layer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L2463/00—Additional details relating to network architectures or network communication protocols for network security covered by H04L63/00
- H04L2463/141—Denial of service attacks against endpoints in a network
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9438592B1 (en) | System and method for providing unified transport and security protocols | |
Qian et al. | Off-path TCP sequence number inference attack-how firewall middleboxes reduce security | |
Baitha et al. | Session hijacking and prevention technique | |
US20160226896A1 (en) | Active validation for ddos and ssl ddos attacks | |
Chao-Yang | DOS attack analysis and study of new measures to prevent | |
Chordiya et al. | Man-in-the-middle (mitm) attack based hijacking of http traffic using open source tools | |
Kavisankar et al. | A mitigation model for TCP SYN flooding with IP spoofing | |
Feng et al. | PMTUD is not Panacea: Revisiting IP Fragmentation Attacks against TCP. | |
Jeyanthi et al. | Packet resonance strategy: a spoof attack detection and prevention mechanism in cloud computing environment | |
Munir et al. | Multipath TCP traffic diversion attacks and countermeasures | |
Huang et al. | An authentication scheme to defend against UDP DrDoS attacks in 5G networks | |
Cao et al. | 0-rtt attack and defense of quic protocol | |
Jain et al. | Distributed denial of service (ddos) attacks-classification and implications | |
CN110401646B (en) | CGA parameter detection method and device in IPv6 secure neighbor discovery transition environment | |
Gajdošík et al. | Security vulnerability analysis of OpenHIP and E-HIP protocols | |
Kavisankar et al. | CNoA: Challenging Number Approach for uncovering TCP SYN flooding using SYN spoofing attack | |
Majhi et al. | An authentication framework for securing virtual machine migration | |
Park et al. | Invi-server: Reducing the attack surfaces by making protected server invisible on networks | |
Yoganguina et al. | Proposition of a model for securing the neighbor discovery protocol (NDP) in IPv6 environment | |
Heydari | Preventing ssh remote attacks using moving target defense | |
Noureldien et al. | Block Spoofed Packets at Source (BSPS): a method for detecting and preventing all types of spoofed source IP packets and SYN Flooding packets at source: a theoretical framework | |
Thakkar et al. | Analysis and prevention of threats to IoT systems | |
Hyppönen | Securing a Linux Server Against Cyber Attacks | |
Thilagavathi et al. | Impact Analysis of Dos & DDos Attacks | |
Feng et al. | Exploiting Cross-Layer Vulnerabilities: Off-Path Attacks on the TCP/IP Protocol Suite |