Yu et al., 2007 - Google Patents
A low overhead dynamic route repairing mechanism for mobile ad hoc networksYu et al., 2007
View PDF- Document ID
- 15222323423738783324
- Author
- Yu C
- Wu T
- Cheng R
- Publication year
- Publication venue
- computer communications
External Links
Snippet
Ad hoc networks are wireless networks with no fixed infrastructure. Each mobile node in the network functions as a router that discovers and maintains routes for other nodes. These nodes may move arbitrarily, therefore network topology changes frequently and …
- 238000004891 communication 0 abstract description 28
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/12—Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
- H04W40/14—Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality based on stability
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/04—Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
- H04W40/246—Connectivity information discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/18—Self-organizing networks, e.g. ad-hoc networks or sensor networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/20—Communication route or path selection, e.g. power-based or shortest path routing based on geographic position or location
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
- H04W40/32—Connectivity information management, e.g. connectivity discovery or connectivity update for defining a routing cluster membership
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/24—Connectivity information management, e.g. connectivity discovery or connectivity update
- H04W40/248—Connectivity information update
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/02—Communication route or path selection, e.g. power-based or shortest path routing
- H04W40/22—Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/02—Topology update or discovery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W40/00—Communication routing or communication path finding
- H04W40/34—Modification of an existing route
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network-specific arrangements or communication protocols supporting networked applications
- H04L67/10—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network
- H04L67/104—Network-specific arrangements or communication protocols supporting networked applications in which an application is distributed across nodes in the network for peer-to-peer [P2P] networking; Functionalities or architectural details of P2P networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/04—Interdomain routing, e.g. hierarchical routing
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/48—Routing tree calculation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/12—Shortest path evaluation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W28/00—Network traffic or resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W8/00—Network data management
- H04W8/02—Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
- H04W8/08—Mobility data transfer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/20—Hop count for routing purposes, e.g. TTL
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L45/00—Routing or path finding of packets in data switching networks
- H04L45/30—Special provisions for routing multiclass traffic
- H04L45/302—Route determination based on requested QoS
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/04—Terminal devices adapted for relaying to or from another terminal or user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W80/00—Wireless network protocols or protocol adaptations to wireless operation, e.g. WAP [Wireless Application Protocol]
- H04W80/04—Network layer protocols, e.g. mobile IP [Internet Protocol]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gui et al. | SHORT: self-healing and optimizing routing techniques for mobile ad hoc networks | |
Kaur et al. | Comparative analysis of AODV, OLSR, TORA, DSR and DSDV routing protocols in mobile ad-hoc networks | |
Prabha et al. | An improved multipath MANET routing using link estimation and swarm intelligence | |
Rana et al. | Analytical analysis of improved directional location added routing protocol for VANETS | |
Yu et al. | An ad hoc routing protocol with multiple backup routes | |
Mishra et al. | Comparison of MANET routing protocols | |
Devi et al. | Mobile ad hoc networks and routing protocols in iot enabled | |
Yu et al. | A low overhead dynamic route repairing mechanism for mobile ad hoc networks | |
Parvathi | Comparative analysis of CBRP, AODV, DSDV routing protocols in mobile Ad-hoc networks | |
Keshtgary et al. | Performance evaluation of reactive, proactive and hybrid routing protocols in MANET | |
Malwe et al. | Enhancement of DSR and AODV protocols using link availability prediction | |
Singh et al. | A survey: Ad-hoc on demand distance vector (AODV) protocol | |
Yen et al. | Routing with adaptive path and limited flooding for mobile ad hoc networks | |
Nissar et al. | A review and a new approach to reduce routing overhead in MANETs | |
Chen et al. | Performance comparison of AODV and OFLSR in wireless mesh networks | |
Hamma et al. | Performance evaluation of reactive and proactive routing protocol in IEEE 802.11 ad hoc network | |
Ramalakshmi et al. | Weighted dominating set based routing for ad hoc communications in emergency and rescue scenarios | |
Chen et al. | SOM: spiral-fat-tree-based on-demand multicast protocol in a wireless ad-hoc network | |
Gui et al. | A framework for self-healing and optimizing routing techniques for mobile ad hoc networks | |
Ergenç et al. | Plane-separated routing in ad-hoc networks | |
Hwang et al. | Cross-layer design of P2P file sharing over mobile ad hoc networks | |
Shenbagalakshmi et al. | RETRACTED ARTICLE: Enhanced route discovery using connected dominating set and 2-hop repair in wireless ad hoc networks | |
Sampada et al. | Performance analysis of energy-efficient MANETs-using modified AODV (M-AODV) | |
Pandey et al. | IRF-NMB: intelligent route formation technique in Ad Hoc network using node mobility behaviour | |
Kaur et al. | Energy optimization in Manet using enhanced routing protocol |