[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Chang et al., 2015 - Google Patents

A novel study on ant-based clustering for paddy rice image classification

Chang et al., 2015

Document ID
15271216079395877028
Author
Chang S
Wan S
Publication year
Publication venue
Arabian Journal of Geosciences

External Links

Snippet

Paddy rice is the major crop of food in Taiwan. There are three main contributions of rice cultivation on Taiwan: regional eco-friendly of environments, adjustment of floods, and refreshing the air. The estimation of paddy rice crop area is important since this information …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6251Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on a criterion of topology preservation, e.g. multidimensional scaling, self-organising maps
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • G06K9/6277Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches based on a parametric (probabilistic) model, e.g. based on Neyman-Pearson lemma, likelihood ratio, Receiver Operating Characteristic [ROC] curve plotting a False Acceptance Rate [FAR] versus a False Reject Rate [FRR]
    • G06K9/6278Bayesian classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6279Classification techniques relating to the number of classes
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6256Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00624Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
    • G06K9/0063Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas
    • G06K9/00657Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas of vegetation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • G06N99/005Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30241Information retrieval; Database structures therefor; File system structures therefor in geographical information databases
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30587Details of specialised database models
    • G06F17/30595Relational databases
    • G06F17/30598Clustering or classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computer systems utilising knowledge based models
    • G06N5/04Inference methods or devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computer systems based on specific mathematical models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Similar Documents

Publication Publication Date Title
Jain et al. An approach for hyperspectral image classification by optimizing SVM using self organizing map
Digra et al. Land use land cover classification of remote sensing images based on the deep learning approaches: a statistical analysis and review
Ma et al. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery
Song et al. Comparison of artificial neural networks and support vector machine classifiers for land cover classification in Northern China using a SPOT-5 HRG image
Halder et al. Supervised and unsupervised landuse map generation from remotely sensed images using ant based systems
Jayakumari et al. Object-level classification of vegetable crops in 3D LiDAR point cloud using deep learning convolutional neural networks
Tiwari et al. Application of Cluster Analysis In Agriculture- A Review Article
Narkhede et al. Evaluation of modified K-means clustering algorithm in crop prediction
Alberto et al. Extraction of onion fields infected by anthracnose-twister disease in selected municipalities of Nueva Ecija using UAV imageries
Wan et al. A novel study of artificial bee colony with clustering technique on paddy rice image classification
Yele et al. Hybrid hesitant fuzzy linguistic bi-objective binary coyote clustering based segmentation and classification for land use land cover in hyperspectral image
Bukheet et al. Land cover change detection of Baghdad city using multi-spectral remote sensing imagery
Chang et al. A novel study on ant-based clustering for paddy rice image classification
Gavade et al. Sparse-FCM and deep learning for effective classification of land area in multi-spectral satellite images
Lasaponara et al. Pattern recognition and classification using VHR data for archaeological research
Priya et al. Modified genetic algorithm (MGA) based feature selection with mean weighted least squares twin support vector machine (MW-LSTSVM) approach for vegetation classification
Escobar-Flores et al. Unmanned aerial vehicle images in the machine learning for agave detection
Behera et al. A comprehensive approach towards enhancing land use land cover classification through machine learning and object-based image analysis
Lein Object-based analysis
Bispo dos Santos et al. Coastal land cover mapping using UAV imaging on the southeast coast of Brazil
Kiani et al. Developing an interpretation system for high-resolution remotely sensed images based on hybrid decision-making process in a multi-scale manner
Wang et al. The potential of image segmentation applied to sampling design for improving farm-level multi-soil property mapping accuracy
Dutta Fuzzy c-means classification of multispectral data incorporating spatial contextual information by using Markov random field
Kalaivani et al. Crop classification and mapping for agricultural land from satellite images
Shanmuganathan A hybrid artificial neural network (ANN) approach to spatial and non-spatial attribute data mining: A case study experience