Lun et al., 2019 - Google Patents
Heat pumps for sustainable heating and coolingLun et al., 2019
- Document ID
- 14987700401904960741
- Author
- Lun Y
- Tung S
- Publication year
External Links
Snippet
This book aims to highlight the significance of using sustainable energy to prevent degradation of the globe. Energy sustainability can be achieved through improved energy efficiency. Heat pump provides an energy-efficient alternative for heating and cooling. To …
- 238000001816 cooling 0 title abstract description 445
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F3/00—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
- F24F3/12—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
- F24F3/14—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
- F24F3/1411—Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/50—Systems profiting of external/internal conditions
- Y02B30/56—Heat recovery units
- Y02B30/563—Air to air
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/50—Systems profiting of external/internal conditions
- Y02B30/52—Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety systems or apparatus
- F24F11/0009—Electrical control or safety systems or apparatus
- F24F11/001—Control systems or circuits characterised by their inputs, e.g. using sensors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/50—Systems profiting of external/internal conditions
- Y02B30/54—Free-cooling systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/08—Energy efficient heating, ventilation or air conditioning [HVAC] relating to domestic heating, space heating or domestic hot water heating or supply systems [DHW]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat; combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat; combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat; combined with household units such as an oven or water heater
- F24F5/0046—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat; combined with household units such as an oven or water heater using natural energy, e.g. solar energy, energy from the ground
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Rooms units, e.g. receiving primary air from a central station or with supply of heating or cooling agents from a central station, such as those applied to air-treatment systems included in F24F3/00 and F24F5/00
- F24F1/06—Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
- F24F1/46—Component arrangements in separate outdoor units
- F24F1/48—Component arrangements in separate outdoor units characterized by air airflow, e.g. inlet or outlet airflow
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F12/00—Use of energy recovery systems in air conditioning, ventilation or screening
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—INDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/40—Geothermal heat-pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING, AIR-HUMIDIFICATION, VENTILATION, USE OF AIR CURRENTS FOR SCREENING
- F24F2203/00—Devices or apparatus used for air treatment
- F24F2203/10—Rotary wheel
- F24F2203/1084—Rotary wheel comprising two flow rotor segments
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lun et al. | Heat pumps for sustainable heating and cooling | |
Vakiloroaya et al. | A review of different strategies for HVAC energy saving | |
Comino et al. | Energy saving potential of a hybrid HVAC system with a desiccant wheel activated at low temperatures and an indirect evaporative cooler in handling air in buildings with high latent loads | |
Duan et al. | Dynamic simulation of a hybrid dew point evaporative cooler and vapour compression refrigerated system for a building using EnergyPlus | |
Zhang | Energy performance of independent air dehumidification systems with energy recovery measures | |
Chua et al. | Achieving better energy-efficient air conditioning–a review of technologies and strategies | |
Wang et al. | Handbook of air conditioning and refrigeration | |
Zaki et al. | Separate sensible and latent cooling technologies: A comprehensive review | |
Dhamneya et al. | Theoretical performance analysis of window air conditioner combined with evaporative cooling for better indoor thermal comfort and energy saving | |
Ding et al. | On-site measurement and simulation investigation on condensation dehumidification and desiccant dehumidification in Hong Kong | |
Yang et al. | Experimental performance analysis of hybrid air conditioner in cooling season | |
Lee et al. | Design of heat pump-driven liquid desiccant air conditioning systems for residential building | |
Elnagar et al. | A qualitative assessment of integrated active cooling systems: A review with a focus on system flexibility and climate resilience | |
Yang et al. | Comprehensive test of ultra-efficient air conditioner with smart evaporative cooling ventilation and photovoltaic | |
Kilkis | Exergy-optimum coupling of heat recovery ventilation units with heat pumps in sustainable buildings | |
Kim et al. | Energy performance enhancement in air-source heat pump with a direct evaporative cooler-applied condenser | |
Bozorgi et al. | Enhancing indoor thermal comfort and sustainability: A solar-driven desiccant cooling and adsorption chiller system with environmental impact assessment | |
Kozubal et al. | Low-flow liquid desiccant air-conditioning: demonstrated performance and cost implications | |
Turski | Conceptual adsorption system of cooling and heating supplied by solar energy | |
Yang et al. | Theoretical performance analysis of a new hybrid air conditioning system with two-stage energy recovery in cold winter | |
Lu et al. | Generalization of second law efficiency for next-generation cooling and dehumidification systems | |
CN206771604U (en) | One kind evaporation cooling united air-conditioner set of mechanical refrigeration | |
Jiang et al. | Comparison study of a novel solid desiccant heat pump system with EnergyPlus | |
CN101968242A (en) | Energy-saving environmental-friendly heat-supply brand new wind air conditioner | |
Yau et al. | A comprehensive review of variable refrigerant flow (vrf) and ventilation designs for thermal comfort in commercial buildings |