Wang et al., 2002 - Google Patents
Polymer gel electrolyte supported with microporous polyolefin membranes for lithium ion polymer batteryWang et al., 2002
- Document ID
- 14943584763867168072
- Author
- Wang Y
- Travas-Sejdic J
- Steiner R
- Publication year
- Publication venue
- Solid State Ionics
External Links
Snippet
A polymer gel electrolyte supported with a microporous polyolefin membrane for lithium ion polymer batteries was prepared and characterized. The polymer gel electrolytes were based on poly (vinylidene fluoride-co-hexafluoropropylene)(PVdF-HFP), lithium salt and carbonate …
- 239000012528 membrane 0 title abstract description 31
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2/00—Constructional details or processes of manufacture of the non-active parts
- H01M2/14—Separators; Membranes; Diaphragms; Spacing elements
- H01M2/16—Separators; Membranes; Diaphragms; Spacing elements characterised by the material
- H01M2/164—Separators; Membranes; Diaphragms; Spacing elements characterised by the material comprising non-fibrous material
- H01M2/1653—Organic non-fibrous material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2/00—Constructional details or processes of manufacture of the non-active parts
- H01M2/14—Separators; Membranes; Diaphragms; Spacing elements
- H01M2/145—Manufacturing processes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2/00—Constructional details or processes of manufacture of the non-active parts
- H01M2/02—Cases, jackets or wrappings
- H01M2/0202—Cases, jackets or wrappings for small-sized cells or batteries, e.g. miniature battery or power cells, batteries or cells for portable equipment
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Polymer gel electrolyte supported with microporous polyolefin membranes for lithium ion polymer battery | |
Jeong et al. | Effect of thickness of coating layer on polymer-coated separator on cycling performance of lithium-ion polymer cells | |
Djian et al. | Lithium-ion batteries with high charge rate capacity: Influence of the porous separator | |
Prosini et al. | A novel intrinsically porous separator for self-standing lithium-ion batteries | |
JP4062856B2 (en) | Positive electrode active material and non-aqueous electrolyte secondary battery | |
Kim et al. | Preparation of a trilayer separator and its application to lithium-ion batteries | |
Song et al. | Composite polymer electrolytes reinforced by non-woven fabrics | |
Kim et al. | Electrochemical characterization of gel polymer electrolytes prepared with porous membranes | |
Zhang et al. | Microporous poly (acrylonitrile-methyl methacrylate) membrane as a separator of rechargeable lithium battery | |
RU2631239C2 (en) | Method of producing a layer of active material of positive electrode for lithium-ion battery and layer of active material of positive electrode for lithium-ion accumulator | |
US20060115737A1 (en) | Electrode body evaluation method and lithium secondary cell using the same | |
Kim et al. | Gel-coated membranes for lithium-ion polymer batteries | |
Kim et al. | Electrochemical performances of lithium-ion cells prepared with polyethylene oxide-coated separators | |
Wu et al. | High-rate capability of lithium-ion batteries after storing at elevated temperature | |
Tran et al. | Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode | |
MXPA03000864A (en) | Particulate electrode including electrolyte for a rechargeable lithium battery. | |
TW200830615A (en) | Forming solid electrolyte interface layer on lithium-ion polymer battery electrode | |
Shin et al. | Surface-modified separators prepared with conductive polymer and aluminum fluoride for lithium-ion batteries | |
Song et al. | Thermally stable gel polymer electrolytes | |
CN106058261B (en) | Non-aqueous electrolyte secondary battery and its manufacturing method | |
Ramasamy et al. | Electrochemical characterization of a polypyrrole/Co0. 2CrOx composite as a cathode material for lithium ion batteries | |
Kim et al. | Highly conductive polymer electrolytes supported by microporous membrane | |
Eo et al. | Effect of an inorganic additive on the cycling performances of lithium-ion polymer cells assembled with polymer-coated separators | |
Sannier et al. | Room temperature lithium metal batteries based on a new gel polymer electrolyte membrane | |
Kim et al. | Electrochemical performance of lithium-ion polymer cell using gel polymer electrolyte based on acrylonitrile-methyl methacrylate-styrene terpolymer |