[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Demirbas et al., 2019 - Google Patents

Efficient, diode-pumped, high-power (> 300W) cryogenic Yb: YLF laser with broad-tunability (995-1020.5 nm): investigation of E//a-axis for lasing

Demirbas et al., 2019

View PDF
Document ID
14880384087297338118
Author
Demirbas U
Cankaya H
Thesinga J
Kärtner F
Pergament M
Publication year
Publication venue
Optics express

External Links

Snippet

We present, what is to our knowledge, the first detailed lasing investigation of cryogenic Yb: YLF gain media in the E//a-axis. Compared to the usually employed E//c-axis, the a-axis of Yb: YLF provides a much broader and smooth gain profile, but this comes at the expense of …
Continue reading at opg.optica.org (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/14Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/14Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a non-linear optical device, e.g. exhibiting Brillouin- or Raman-scattering
    • H01S3/109Frequency multiplying, e.g. harmonic generation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/05Construction or shape of optical resonators; Accomodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094038End pumping
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity
    • H01S3/1063Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling a device placed within the cavity using a solid state device provided with at least one potential jump barrier
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Pulse generation, e.g. Q-switching, mode locking
    • H01S3/1106Mode locking
    • H01S3/1112Passive mode locking
    • H01S3/1115Passive mode locking using a saturable absorber
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/02Constructional details
    • H01S3/04Cooling arrangements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S3/00Lasers, i.e. devices for generation, amplification, modulation, demodulation, or frequency-changing, using stimulated emission, of infra-red, visible, or ultra-violet waves
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping

Similar Documents

Publication Publication Date Title
Demirbas et al. Efficient, diode-pumped, high-power (> 300W) cryogenic Yb: YLF laser with broad-tunability (995-1020.5 nm): investigation of E//a-axis for lasing
Waritanant et al. High efficiency passively mode-locked Nd: YVO 4 laser with direct in-band pumping at 914 nm
Demirbas et al. 20-mJ, sub-ps pulses at up to 70 W average power from a cryogenic Yb: YLF regenerative amplifier
Jabczyński et al. Q-switched mode-locking with acousto-optic modulator in a diode pumped Nd: YVO 4 laser
Demirbas et al. Femtosecond Cr: LiSAF and Cr: LiCAF lasers pumped by tapered diode lasers
Du et al. Cr: ZnS saturable absorber passively Q-switched Tm, Ho: GdVO 4 laser
Guo et al. Diode-wing-pumped electro-optically Q-switched 2 μm laser with pulse energy scaling over ten millijoules
Demirbas et al. Low-cost, single-mode diode-pumped Cr: Colquiriite lasers
Caracciolo et al. High pulse energy multiwatt Yb: CaAlGdO 4 and Yb: CaF 2 regenerative amplifiers
Demirbas Power scaling potential of continuous-wave Cr: LiSAF and Cr: LiCAF lasers in thin-disk geometry
Yao et al. Continuous-wave and Q-switched operation of a resonantly pumped Ho: YAlO3 laser
Huang et al. Tunable GHz pulse repetition rate operation in high-power TEM 00-mode Nd: YLF lasers at 1047 nm and 1053 nm with self mode locking
Liu et al. High energy, high brightness picosecond master oscillator power amplifier with output power 65.5 W
Demirbas et al. Comparative investigation of lasing and amplification performance in cryogenic Yb: YLF systems
Demirbas et al. Alexandrite: an attractive thin-disk laser material alternative to Yb: YAG?
Fibrich et al. Alexandrite microchip lasers
Demirbas et al. Advantages of YLF host over YAG in power scaling at cryogenic temperatures: direct comparison of Yb-doped systems
Guo et al. Compact, high-power, high-beam-quality quasi-CW microsecond five-pass zigzag slab 1319 nm amplifier
Wang et al. Single-longitudinal-mode Ho: YVO 4 MOPA system with a passively Q-switched unidirectional ring oscillator
Wu et al. Continuous-wave and pulsed 1,066-nm Nd: Gd 0.69 Y 0.3 TaO 4 laser directly pumped by a 879-nm laser diode
Demirbas et al. Continuous-wave, quasi-continuous-wave, gain-switched, and femtosecond burst-mode operation of multi-mode diode-pumped Cr: LiSAF lasers
Du et al. 1ps passively mode-locked laser operation of Na, Yb: CaF 2 crystal
Demirbas et al. Mode-locked Cr: LiSAF laser far off the gain peak: tunable sub-200-fs pulses near 1 µm
Yan et al. High repetition rate dual-rod acousto-optics Q-switched composite Nd: YVO 4 laser
Zhou et al. 5 kHz, 4.2 mJ, 900 ps end-pumped Nd: YVO 4 MOPA laser system