Modarres-Zadeh et al., 2012 - Google Patents
Parylene supported 20um* 20um uncooled thermoelectric infrared detector with high fill factorModarres-Zadeh et al., 2012
- Document ID
- 14856564421068608782
- Author
- Modarres-Zadeh M
- Carpenter Z
- Rockley M
- Abdolvand R
- Publication year
- Publication venue
- Infrared Technology and Applications XXXVIII
External Links
Snippet
Presented is a novel design for an uncooled surface-micromachined thermoelectric (TE) infrared (IR) detector. The detector features a P-doped polysilicon/Nichrome (Cr20-Ni80) thermocouple, which is embedded into a thin layer of Parylene-N to provide structural …
- 229920000052 poly(p-xylylene) 0 title abstract description 36
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/08—Optical features
- G01J5/0803—Optical elements not provided otherwise, e.g. optical manifolds, gratings, holograms, cubic beamsplitters, prisms, particular coatings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/10—Radiation pyrometry using electric radiation detectors
- G01J5/20—Radiation pyrometry using electric radiation detectors using resistors, thermistors, or semi-conductors sensitive to radiation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/04—Casings Mountings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/10—Radiation pyrometry using electric radiation detectors
- G01J5/12—Radiation pyrometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/0225—Shape of the cavity itself or of elements contained in or suspended over the cavity
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/28—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only
- H01L35/32—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only characterised by the structure or configuration of the cell or thermo-couple forming the device including details about, e.g., housing, insulation, geometry, module
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J2005/0077—Imaging
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/28—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only
- H01L35/30—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only characterised by the heat-exchanging means at the junction
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/12—Selection of the material for the legs of the junction
- H01L35/14—Selection of the material for the legs of the junction using inorganic compositions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/38—Radiation pyrometry using extension or expansion of solids or fluids
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/34—Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/02—Details
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/09—Devices sensitive to infra-red, visible or ultraviolet radiation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | MEMS-based thermoelectric infrared sensors: A review | |
Bhan et al. | Uncooled infrared microbolometer arrays and their characterisation techniques | |
US8629398B2 (en) | Detection beyond the standard radiation noise limit using spectrally selective absorption | |
Iborra et al. | IR uncooled bolometers based on amorphous Ge/sub x/Si/sub 1-x/O/sub y/on silicon micromachined structures | |
US20140326883A1 (en) | Nanowire thermoelectric infrared detector | |
Li et al. | A front-side microfabricated tiny-size thermopile infrared detector with high sensitivity and fast response | |
Foote et al. | Uncooled thermopile infrared detector linear arrays with detectivity greater than 10/sup 9/cmhz/sup 1/2//w | |
CN108885137A (en) | A kind of IR detector array equipment | |
Zhou et al. | CMOS compatible midinfrared wavelength-selective thermopile for high temperature applications | |
Hou et al. | Enhanced performances of CMOS-MEMS thermopile infrared detectors using novel thin film stacks | |
Modarres-Zadeh et al. | High-responsivity thermoelectric infrared detectors with stand-alone sub-micrometer polysilicon wires | |
He et al. | Improved thermopile on pyramidally-textured dielectric film | |
Ihring et al. | Surface-micromachined thermoelectric infrared focal-plane array with high detectivity for room temperature operation | |
WO2013089824A1 (en) | Nanowire thermoelectric infrared detector | |
Chen et al. | A CMOS-MEMS Thermopile With Low Thermal Conductance and a Near-Perfect Emissivity in the 8–14-$\mu\hbox {m} $ Wavelength Range | |
Ahmed et al. | Characterization of an amorphous ge/sub x/si/sub 1-x/o/sub y/microbolometer for thermal imaging applications | |
Modarres-Zadeh et al. | Parylene supported 20um* 20um uncooled thermoelectric infrared detector with high fill factor | |
Moreno et al. | Un-Cooled microbolometers with amorphous germanium-silicon (a-GexSiy: H) thermo-sensing films | |
Gupta et al. | Design optimization of Pixel Structure for [alpha]-Si based uncooled Infrared detector | |
Modarres Zadeh et al. | Parylene supported uncooled thermoelectric infrared detector with umbrella like absorber | |
Ihring et al. | High performance uncooled THz sensing structures based on antenna-coupled air-bridges | |
Malyarov | Uncooled thermal IR arrays | |
Risquez et al. | Integration of a High Temperature Transition Metal Oxide NTC Thin Film in a Microbolometer for LWIR Detection | |
Liu et al. | Uncooled infrared detection using CMOS thermomechanical capacitive sensors | |
Foote et al. | Space science applications of thermopile detector arrays |