[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Hamada et al., 2024 - Google Patents

Development of an arcless hybrid DC fault current limiter suitable for DC railway power networks

Hamada et al., 2024

View HTML
Document ID
14796028588244923479
Author
Hamada A
Abdellatif W
Abdelwahab S
Ahmed M
Publication year
Publication venue
International Journal of Electrical Power & Energy Systems

External Links

Snippet

A hybrid current limiter device is built and tested for the railway electrical network 1500 V DC received from a power grid 20 kV AC, it is based on an ultra-fast turn-off power switch to break down the fault current as a soft transition. The advantage of both the current limiter of …
Continue reading at www.sciencedirect.com (HTML) (other versions)

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection integrated protection
    • H02H3/02Details
    • H02H3/025Disconnection after limiting, e.g. when limiting is not sufficient or for facilitating disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • H02H7/222Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices for switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order
    • H02H3/023Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order by short-circuiting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/02Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/04Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for transformers
    • H02H7/045Differential protection of transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection integrated protection
    • H02H3/006Calibration or setting of parameters
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere
    • H01H9/541Contacts shunted by semiconductor devices
    • H01H9/542Contacts shunted by static switch means

Similar Documents

Publication Publication Date Title
Mohammadi et al. HVDC circuit breakers: A comprehensive review
Barnes et al. HVDC circuit breakers–A review
Guillod et al. Protection of MV converters in the grid: The case of MV/LV solid-state transformers
Smith et al. Solid-state distribution current limiter and circuit breaker: application requirements and control strategies
Mokhberdoran et al. Multiport hybrid HVDC circuit breaker
Lazzari et al. Design and implementation of LVDC hybrid circuit breaker
Radmanesh et al. A novel solid-state fault current-limiting circuit breaker for medium-voltage network applications
Guo et al. A thyristor full-bridge-based DC circuit breaker
Savaliya et al. Analysis and experimental validation of bidirectional Z-source DC circuit breakers
Ghanbari et al. Development of an efficient solid-state fault current limiter for microgrid
Lee et al. Impact of SFCL on the four types of HVDC circuit breakers by simulation
JP6452701B2 (en) Fault current limiter and current limiter system with high speed switch
Ye et al. System studies of the superconducting fault current limiter in electrical distribution grids
Song et al. Reducing the fault-transient magnitudes in multiterminal HVdc grids by sequential tripping of hybrid circuit breaker modules
Martinez-Velasco et al. Parametric analysis of the hybrid HVDC circuit breaker
Mokhberdoran et al. Design and implementation of fast current releasing DC circuit breaker
Pei et al. Hybrid DC circuit breaker with coupled inductor for automatic current commutation
Xue et al. A modular hybrid DC circuit breaker with fault current self-adaptive control and protection coordination
Hamada et al. Development of an arcless hybrid DC fault current limiter suitable for DC railway power networks
JP5031607B2 (en) DC high-speed vacuum circuit breaker
Zito et al. Design and testing of Crowbar Protection System for the JT-60SA superconducting magnet power supplies
Liljestrand et al. A new hybrid medium voltage breaker for DC interruption or AC fault current limitation
Hasan et al. An AC hybrid current limiting and interrupting device for low voltage systems
Kong Review of DC Circuit Breakers for Submarine Applications.
KR101848681B1 (en) Direct current circuit breaker