[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Eiselt et al., 2018 - Google Patents

Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G ethernet-based fronthaul architecture

Eiselt et al., 2018

View PDF
Document ID
14689074403481686624
Author
Eiselt N
Muench D
Dochhan A
Griesser H
Eiselt M
Olmos J
Monroy I
Elbers J
Publication year
Publication venue
Journal of lightwave technology

External Links

Snippet

For a future 5G Ethernet-based fronthaul architecture, 100G trunk lines of a transmission distance up to 10 km over a standard single-mode fiber (SSMF) in combination with cheap gray optics to daisy chain cell site network interfaces are a promising cost-and power …
Continue reading at opg.optica.org (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5055Laser transmitters using external modulation using a pre-coder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5051Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/5167Duo-binary; Alternative mark inversion; Phase shaped binary transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2543Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
    • H04B10/2557Cross-phase modulation [XPM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25137Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using pulse shaping at the transmitter, e.g. pre-chirping or dispersion supported transmission [DST]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; Arrangements for supplying electrical power along data transmission lines
    • H04L25/20Repeater circuits; Relay circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems

Similar Documents

Publication Publication Date Title
Eiselt et al. Performance comparison of 112-Gb/s DMT, Nyquist PAM4, and partial-response PAM4 for future 5G ethernet-based fronthaul architecture
Chi et al. Enabling technologies for high-speed visible light communication employing CAP modulation
Zhong et al. 140-Gb/s 20-km Transmission of PAM-4 Signal at 1.3$\mu\text {m} $ for Short Reach Communications
Napoli et al. Digital compensation of bandwidth limitations for high-speed DACs and ADCs
Houtsma et al. Investigation of modulation schemes for flexible line-rate high-speed TDM-PON
Dochhan et al. Solutions for 80 km DWDM Systems
Tang et al. High-speed transmission of adaptively modulated optical OFDM signals over multimode fibers using directly modulated DFBs
Che et al. Approaching the capacity of colored-SNR optical channels by multicarrier entropy loading
Kikuchi et al. Intensity-modulated/direct-detection (IM/DD) Nyquist pulse-amplitude modulation (PAM) signaling for 100-Gbit/s/λ optical short-reach transmission
Eiselt et al. Direct detection solutions for 100G and beyond
Hossain et al. Transmission beyond 200 Gbit/s with IM/DD system for campus and intra-datacenter network applications
Sharif et al. Modulation schemes for single-laser 100 Gb/s links: Single-carrier
Che et al. Modulation format and digital signal processing for IM-DD optics at post-200G era
Kruglov et al. Comparison of PAM and CAP modulation schemes for data transmission over SI-POF
Yamamoto et al. Spectral-shaping technique based on nonlinear-coded-modulation for short-reach optical transmission
Stojanović et al. 56-Gbit/s 4-D PAM-4 TCM transmission evaluation for 400-G data center applications
Li et al. Noise shaping enhanced DMT signal transmission utilizing low-resolution DAC
Li et al. Demonstration of C-band amplifier-free 100 Gb/s/λ direct-detection links beyond 40-km SMF using a high-power SSB transmitter
Wang et al. Multi-rate Nyquist-SCM for C-band 100 Gbit/s signal over 50 km dispersion-uncompensated link
Feng et al. Nyquist four-level pulse amplitude modulation scheme (PAM-4) based on hierarchical modulation in IM/DD-TDM PON with hybrid equalization
Rahman et al. LUT-assisted pre-compensation for 225 Gb/s/λ O-band transmission
Wettlin et al. Comparison of PAM formats for 200 Gb/s short reach transmission systems
Kikuchi et al. BER improvement of IM/DD higher-order optical PAM signal with precise non-linearity compensation
Renaudier et al. Multi rate IMDD transceivers for optical interconnects using coded modulation
Kikuchi et al. Application of Tomlinson-Harashima precoding (THP) for short-reach band-limited nyquist PAM and faster-than-Nyquist PAM signaling