[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Škalic et al., 2020 - Google Patents

Energy Harvesting on Power Amplifiers Based on Application of Thermoelectric Generators

Škalic et al., 2020

Document ID
14438165995923154152
Author
Škalic I
Marinović I
Publication year
Publication venue
2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO)

External Links

Snippet

This paper proposes a system for energy harvesting or converting wasted energy (heat) into electric energy using solid state thermoelectric generators (TEGs). As a source of heat, wasted energy on output power transistors of PA (power amplifier) in AB-class were used …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/28Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only
    • H01L35/30Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only characterised by the heat-exchanging means at the junction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/28Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only
    • H01L35/32Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only characterised by the structure or configuration of the cell or thermo-couple forming the device including details about, e.g., housing, insulation, geometry, module
    • H01L35/325Cascades of thermo-couples
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements
    • H01L23/38Cooling arrangements using the Peltier effect
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/12Selection of the material for the legs of the junction
    • H01L35/14Selection of the material for the legs of the junction using inorganic compositions
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L35/00Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L35/34Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air

Similar Documents

Publication Publication Date Title
Tsai et al. Model building and simulation of thermoelectric module using Matlab/Simulink
Adams et al. Active peltier coolers based on correlated and magnon-drag metals
Min et al. Conversion efficiency of thermoelectric combustion systems
KR102395545B1 (en) Thermoelectric devices based on diodes
Kanimba et al. Modeling of a thermoelectric generator device
Hodes Optimal pellet geometries for thermoelectric power generation
Sulaiman et al. Validation of a waste heat recovery model for a 1kW PEM fuel cell using thermoelectric generator
Hodes Optimal design of thermoelectric refrigerators embedded in a thermal resistance network
Colomer et al. Electrically tunable thermal conductivity in thermoelectric materials: Active and passive control
Manikandan et al. Transient thermal behavior of annular thermoelectric cooling system
Naji et al. Transient behaviour of a thermoelectric device
Škalic et al. Energy Harvesting on Power Amplifiers Based on Application of Thermoelectric Generators
Wang et al. Study of voltage-controlled characteristics for thermoelectric coolers
Ionescu et al. Performance Analysis of Thermoelectric Cooler—Thermoelectric Generator System for Heat Recovery Applications
Yao et al. Spot cooling using thermoelectric microcoolers
Škalic et al. Analysis of Thermoelectric Generators Thermally Connected in Serial and Parallel Combinations
Hakim et al. The effect of temperature mismatch on interconnected thermoelectric module for power generation
Mal et al. Thermoelectric power generator integrated cookstove: a sustainable approach of waste heat to energy conversion
Yavuz et al. The Experimental Design of Thermoelectric Generator for Industrial Waste Heat Recovery
Dziurdzia et al. From constant to temperature dependent parameters based electrothermal models of TEG
Gull et al. Experimental and Numerical Investigation of Thermoelectric Cooling Module
Harvey et al. Enhancing performance of thermoelectric coolers through the application of distributed control
Rezania Temperature Control of IGBTs by Thermoelectric Cooler
Remeli et al. Power generation and heat recovery using heat pipe thermoelectric generator (HPTEG)
Parveen et al. Measurement of Power By Varying Load Resistance–Thermoelectric Generator