[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Hu et al., 2015 - Google Patents

Compensation of errors due to incident beam drift in a 3 DOF measurement system for linear guide motion

Hu et al., 2015

View HTML @Full View
Document ID
14411002762652300868
Author
Hu P
Mao S
Tan J
Publication year
Publication venue
Optics Express

External Links

Snippet

A measurement system with three degrees of freedom (3 DOF) that compensates for errors caused by incident beam drift is proposed. The system's measurement model (ie its mathematical foundation) is analyzed, and a measurement module (ie the designed …
Continue reading at opg.optica.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups
    • G01B21/02Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof in so far as they are not adapted to particular types of measuring means of the preceding groups for measuring length, width, or thickness by measuring coordinates of points
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Instruments as specified in the subgroups and characterised by the use of optical measuring means
    • G01B9/02Interferometers for determining dimensional properties of, or relations between, measurement objects
    • G01B9/02015Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by a particular beam path configuration
    • G01B9/02017Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by a particular beam path configuration contacting one object several times
    • G01B9/02021Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by a particular beam path configuration contacting one object several times contacting different faces of object, e.g. opposite faces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Instruments as specified in the subgroups and characterised by the use of optical measuring means
    • G01B9/02Interferometers for determining dimensional properties of, or relations between, measurement objects
    • G01B9/02001Interferometers for determining dimensional properties of, or relations between, measurement objects characterised by manipulating or generating specific radiation properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/26Measuring arrangements characterised by the use of optical means for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical means for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/14Measuring arrangements characterised by the use of optical means for measuring distance or clearance between spaced objects or spaced apertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/02Measuring arrangements characterised by the use of optical means for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical means
    • G01B11/24Measuring arrangements characterised by the use of optical means for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00
    • G01C15/002Active optical surveying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/40Caliper-like sensors
    • G01B2210/44Caliper-like sensors with detectors on both sides of the object to be measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical means
    • G01B5/004Measuring arrangements characterised by the use of mechanical means for measuring coordinates of points

Similar Documents

Publication Publication Date Title
Qibo et al. Development of a simple system for simultaneously measuring 6DOF geometric motion errors of a linear guide
Cui et al. System for simultaneously measuring 6DOF geometric motion errors using a polarization maintaining fiber-coupled dual-frequency laser
Lou et al. Laser homodyne straightness interferometer with simultaneous measurement of six degrees of freedom motion errors for precision linear stage metrology
Hsieh et al. Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements
Chen et al. Laser straightness interferometer system with rotational error compensation and simultaneous measurement of six degrees of freedom error parameters
Han et al. Parallel determination of absolute distances to multiple targets by time-of-flight measurement using femtosecond light pulses
Zhao et al. Measurement system and model for simultaneously measuring 6DOF geometric errors
Huang et al. Low cost, compact 4-DOF measurement system with active compensation of beam angular drift error
Cai et al. Robust roll angular error measurement system for precision machines
Li et al. Measurement of six-degree-of-freedom planar motions by using a multiprobe surface encoder
Hsieh et al. Two-dimensional displacement measurement by quasi-common-optical-path heterodyne grating interferometer
Lv et al. Simple and compact grating-based heterodyne interferometer with the Littrow configuration for high-accuracy and long-range measurement of two-dimensional displacement
Huang et al. Five-degrees-of-freedom measurement system based on a monolithic prism and phase-sensitive detection technique
Zhang et al. Laser heterodyne interferometer with rotational error compensation for precision displacement measurement
Ye et al. Translational displacement computational algorithm of the grating interferometer without geometric error for the wafer stage in a photolithography scanner
Zhu et al. Common-path design criteria for laser datum based measurement of small angle deviations and laser autocollimation method in compliance with the criteria with high accuracy and stability
Hu et al. Compensation of errors due to incident beam drift in a 3 DOF measurement system for linear guide motion
Zhang et al. Laser heterodyne interferometer for simultaneous measuring displacement and angle based on the Faraday effect
Yin et al. Design, fabrication, and verification of a three-dimensional autocollimator
Shi et al. Roll angle measurement system based on differential plane mirror interferometer
Zhang et al. Laser heterodyne interferometric system with following interference units for large XY-θ planar motion measurement
Yin et al. Littrow 3D measurement based on 2D grating dual-channel equal-optical path interference
Cui et al. Compensation for straightness measurement systematic errors in six degree-of-freedom motion error simultaneous measurement system
Guo et al. Three-degree-of-freedom autocollimator based on a combined target reflector
Cai et al. Accuracy improvement of linear stages using on-machine geometric error measurement system and error transformation model