[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Wang et al., 2010 - Google Patents

Very‐Low‐Bandgap Metallopolyynes of Platinum with a Cyclopentadithiophenone Ring for Organic Solar Cells Absorbing Down to the Near‐Infrared Spectral Region

Wang et al., 2010

Document ID
14332346033833676232
Author
Wang X
Wang Q
Yan L
Wong W
Cheung K
Ng A
Djurišić A
Chan W
Publication year
Publication venue
Macromolecular rapid communications

External Links

Snippet

Two solution‐processable metallopolyynes of platinum functionalized with the electron‐ deficient 4H‐cyclopenta [2, 1‐b: 3, 4‐b'] dithiophen‐4‐one spacer and their model molecular complexes were synthesized and developed for the applications of polymer solar cells …
Continue reading at onlinelibrary.wiley.com (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/549Material technologies organic PV cells
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0035Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
    • H01L51/0071Polycyclic condensed heteroaromatic hydrocarbons
    • H01L51/0072Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/42Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture
    • H01L51/4253Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for sensing infra-red radiation, light, electro-magnetic radiation of shorter wavelength or corpuscular radiation and adapted for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation using organic materials as the active part, or using a combination of organic materials with other material as the active part; Multistep processes for their manufacture comprising bulk hetero-junctions, e.g. interpenetrating networks
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0045Carbon containing materials, e.g. carbon nanotubes, fullerenes
    • H01L51/0046Fullerenes, e.g. C60, C70
    • H01L51/0047Fullerenes, e.g. C60, C70 comprising substituents, e.g. PCBM
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms

Similar Documents

Publication Publication Date Title
Fan et al. All‐polymer solar cells based on a conjugated polymer containing siloxane‐functionalized side chains with efficiency over 10%
Subramaniyan et al. Effects of Side Chains on Thiazolothiazole‐Based Copolymer Semiconductors for High Performance Solar Cells
Dou et al. An electron‐deficient building block based on the b← n unit: An electron acceptor for all‐polymer solar cells
Cui et al. Effects of alkylthio and alkoxy side chains in polymer donor materials for organic solar cells
Bin et al. Medium Bandgap Polymer Donor Based on Bi (trialkylsilylthienyl‐benzo [1, 2‐b: 4, 5‐b′]‐difuran) for High Performance Nonfullerene Polymer Solar Cells
Li et al. Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control
Li et al. Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells
Ashraf et al. Thienopyrazine‐based low‐bandgap poly (heteroaryleneethynylene) s for photovoltaic devices
Qin et al. Tuning the Donor–Acceptor Strength of Low‐Bandgap Platinum‐Acetylide Polymers for Near‐Infrared Photovoltaic Applications
Xiao et al. Non‐Fullerene Acceptors with A2= A1‐D‐A1= A2 Skeleton Containing Benzothiadiazole and Thiazolidine‐2, 4‐Dione for High‐Performance P3HT‐Based Organic Solar Cells
Wang et al. Very‐Low‐Bandgap Metallopolyynes of Platinum with a Cyclopentadithiophenone Ring for Organic Solar Cells Absorbing Down to the Near‐Infrared Spectral Region
Chen et al. Synthesis and characterization of a narrow‐bandgap polymer containing alternating cyclopentadithiophene and diketo‐pyrrolo‐pyrrole units for solar cell applications
Zhou et al. Noncovalent interactions induced by fluorination of the central core improve the photovoltaic performance of ADA′-DA-type nonfused ring acceptors
JP2014512100A (en) Electro-optic device active material and electro-optic device
Cuesta et al. Near-IR Absorbing D–A–D Zn-Porphyrin-Based Small-Molecule Donors for Organic Solar Cells with Low-Voltage Loss
Xu et al. Synthesis and characterization of thieno [3, 2‐b] thiophene‐isoindigo‐based copolymers as electron donor and hole transport materials for bulk‐heterojunction polymer solar cells
Bucher et al. Nonfullerene polymer solar cells reaching a 9.29% efficiency using a BODIPY-thiophene backboned donor material
Zhang et al. Bis-silicon-bridged stilbene: A core for small-molecule electron acceptor for high-performance organic solar cells
Xu et al. Synthesis of a Novel Low‐Bandgap Polymer Based on a Ladder‐Type Heptacyclic Arene Consisting of Outer Thieno [3, 2‐b] thiophene Units for Efficient Photovoltaic Application
Wu et al. Star-Shaped Fused-Ring Electron Acceptors with a C 3 h-Symmetric and Electron-Rich Benzotri (cyclopentadithiophene) Core for Efficient Nonfullerene Organic Solar Cells
Sharma et al. Recent progress in advanced organic photovoltaics: emerging techniques and materials
Wang et al. Regulating molecular aggregations of polymers via ternary copolymerization strategy for efficient solar cells
Chen et al. 1, 4-Di (3-alkoxy-2-thienyl)-2, 5-difluorophenylene: A building block enabling high-performance polymer semiconductors with increased open-circuit voltages
Karakawa et al. Near‐Infrared Photovoltaic Performance of Conjugated Polymers Containing Thienoisoindigo Acceptor Units
Liu et al. PDI-based hexapod-shaped nonfullerene acceptors for the high-performance as-cast organic solar cells