Wang et al., 2023 - Google Patents
Invasive mechanical ventilation probability estimation using machine learning methods based on non-invasive parametersWang et al., 2023
- Document ID
- 14326817418359554418
- Author
- Wang H
- Wang C
- Xu J
- Yuan J
- Liu G
- Zhang G
- Publication year
- Publication venue
- Biomedical Signal Processing and Control
External Links
Snippet
Objectives Timely and accurate prediction of the requirement for invasive mechanical ventilation (IMV) can reduce patient mortality. Existing methods (traditional risk adjustment algorithms, clinical observation, et.) use laboratory parameters requiring specialized …
- 238000010801 machine learning 0 title abstract description 36
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/345—Medical expert systems, neural networks or other automated diagnosis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/3431—Calculating a health index for the patient, e.g. for risk assessment
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/32—Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
- G06F19/322—Management of patient personal data, e.g. patient records, conversion of records or privacy aspects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/3487—Medical report generation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/3418—Telemedicine, e.g. remote diagnosis, remote control of instruments or remote monitoring of patient carried devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/3406—Local monitoring or local control of medical devices, e.g. configuration parameters, graphical user interfaces [GUI] or dedicated hardware interfaces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/32—Medical data management, e.g. systems or protocols for archival or communication of medical images, computerised patient records or computerised general medical references
- G06F19/327—Management of hospital data, e.g. scheduling of medical staff or operation rooms, measuring the quality or efficiency of medical staff
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/30—Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
- G06F19/34—Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
- G06F19/3443—Medical data mining, e.g. in previous cases of different patients
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F19/00—Digital computing or data processing equipment or methods, specially adapted for specific applications
- G06F19/10—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology
- G06F19/24—Bioinformatics, i.e. methods or systems for genetic or protein-related data processing in computational molecular biology for machine learning, data mining or biostatistics, e.g. pattern finding, knowledge discovery, rule extraction, correlation, clustering or classification
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/08—Detecting, measuring or recording devices for evaluating the respiratory organs
- A61B5/083—Measuring rate of metabolism by using breath test, e.g. measuring rate of oxygen consumption
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/7405—Details of notification to user or communication with user or patient ; user input means using sound
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/22—Health care, e.g. hospitals; Social work
- G06Q50/24—Patient record management
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/41—Detecting, measuring or recording for evaluating the immune or lymphatic systems
- A61B5/412—Detecting or monitoring sepsis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Detecting, measuring or recording for diagnostic purposes; Identification of persons
- A61B5/0002—Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shashikumar et al. | Development and prospective validation of a deep learning algorithm for predicting need for mechanical ventilation | |
Fialho et al. | Data mining using clinical physiology at discharge to predict ICU readmissions | |
US20130185097A1 (en) | Medical scoring systems and methods | |
Kumar et al. | Neonatal autopsies: a 10-year experience | |
Timmons et al. | Predicting death in pediatric patients with acute respiratory failure | |
Huddar et al. | Predicting complications in critical care using heterogeneous clinical data | |
Shalish et al. | Prediction of extubation readiness in extremely preterm infants by the automated analysis of cardiorespiratory behavior: study protocol | |
Ho et al. | Septic shock prediction for patients with missing data | |
Ruiz et al. | Early prediction of clinical deterioration using data-driven machine-learning modeling of electronic health records | |
Tai et al. | Development of pediatric comorbidity prediction model | |
Jaffe | Using the features of the time and volumetric capnogram for classification and prediction | |
Arnold et al. | Development and internal validation of a pediatric acute asthma prediction rule for hospitalization | |
Wong et al. | Machine learning methods to predict acute respiratory failure and acute respiratory distress syndrome | |
Chakshu et al. | An AI based digital-twin for prioritising pneumonia patient treatment | |
Wu et al. | Developing and evaluating a machine-learning-based algorithm to predict the incidence and severity of ARDS with continuous non-invasive parameters from ordinary monitors and ventilators | |
Mauer et al. | A predictive model of clinical deterioration among hospitalized COVID-19 patients by harnessing hospital course trajectories | |
Mueller et al. | Predicting extubation outcome in preterm newborns: a comparison of neural networks with clinical expertise and statistical modeling | |
Alghatani et al. | Precision clinical medicine through machine learning: using high and low quantile ranges of vital signs for risk stratification of ICU patients | |
Burns et al. | The weaning continuum use of acute physiology and chronic health evaluation III, Burns wean assessment program, therapeutic intervention scoring system, and wean index scores to establish stages of weaning | |
Wang et al. | Invasive mechanical ventilation probability estimation using machine learning methods based on non-invasive parameters | |
Wang et al. | Method of non-invasive parameters for predicting the probability of early in-hospital death of patients in intensive care unit | |
Baidillah et al. | Mechanical ventilation intervention based on machine learning from vital signs monitoring: a scoping review | |
Ladde et al. | End‐tidal carbon dioxide measured at emergency department triage outperforms standard triage vital signs in predicting in‐hospital mortality and intensive care unit admission | |
Schwager et al. | Machine learning modelling for predicting the utilization of invasive and non‐invasive ventilation throughout the ICU duration | |
Cismondi et al. | Predicting laboratory testing in intensive care using fuzzy and neural modeling |