Pavlovic et al., 2004 - Google Patents
Optimized optical filtering for 40 Gb/s/channel enhanced phase-shaped binary transmission in ultra dense WDM systemsPavlovic et al., 2004
- Document ID
- 1438922479120027659
- Author
- Pavlovic N
- Cartaxo A
- Publication year
- Publication venue
- Proceedings of 2004 6th International Conference on Transparent Optical Networks (IEEE Cat. No. 04EX804)
External Links
Snippet
The systematic optimization of multiplexing (MUX) and demultiplexing (DMUX) 3 dB filter bandwidths for enhanced phase-shaped binary transmission (EPSBT) coding format is performed. Long-haul 40 Gb/s ultra dense wavelength division multiplexing (UDWDM) …
- 230000005540 biological transmission 0 title abstract description 17
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2563—Four-wave mixing [FWM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2513—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
- H04B10/2525—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres
- H04B10/25253—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using dispersion-compensating fibres with dispersion management, i.e. using a combination of different kind of fibres in the transmission system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2557—Cross-phase modulation [XPM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/293—Signal power control
- H04B10/294—Signal power control in a multiwavelength system, e.g. gain equalisation
- H04B10/2941—Signal power control in a multiwavelength system, e.g. gain equalisation using an equalising unit, e.g. a filter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2513—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
- H04B10/25133—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator ; optical dispersion compensators involving optical fibres per se G02B6/293
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
- H04B10/2912—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
- H04B10/2916—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2513—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
- H04B10/25137—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion using pulse shaping at the transmitter, e.g. pre-chirping or dispersion supported transmission [DST]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2210/00—Indexing scheme relating to optical transmission systems
- H04B2210/25—Distortion or dispersion compensation
- H04B2210/258—Distortion or dispersion compensation treating each wavelength or wavelength band separately
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
- H04J14/0278—WDM optical network architectures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7751706B2 (en) | Chromatic dispersion compensating apparatus | |
Zhu et al. | High spectral density long-haul 40-Gb/s transmission using CSRZ-DPSK format | |
EP1643668A1 (en) | Method and apparatus for dispersion management in optical communication systems | |
Sugahara et al. | 6,050 km transmission of 32× 42.7 Gb/s DWDM signals using Raman-amplified quadruple-hybrid span configuration | |
Miyamoto et al. | Duobinary carrier-suppressed return-to-zero format and its application to 100GHz-spaced 8× 43-Gbit/s DWDM unrepeatered transmission over 163 km | |
Pavlovic et al. | Optimized optical filtering for 40 Gb/s/channel enhanced phase-shaped binary transmission in ultra dense WDM systems | |
Bigo et al. | Transmission of 32 ETDM channels at 40Gbit/s (1.28 Tbit/s capacity) over 3× 100km of TeraLight (TM) fibre | |
Gul et al. | Multistage amplified and dispersion compensated ultra-long haul DWDM link with high OSNR | |
Becouarn et al. | 42× 42.7 Gb/s RZ-DPSK transmission over a 4820 km long NZDSF deployed line using C-band-only EDFAs | |
Ito et al. | Study of 10G/40G hybrid ultra long haul transmission systems with reconfigurable OADMs for efficient wavelength usage | |
Dupont et al. | 70 x 10 Gbps (mixed RZ-OOK and RZ-DPSK) upgrade of a 7224 km conventional 32 x 10 Gbps designed system | |
US20020044339A1 (en) | Optical transmission system with reduced raman effect depletion | |
JP3756354B2 (en) | WDM transmission system | |
Charrua et al. | Optimized filtering for AMI-RZ and DCS-RZ SSB signals in 40-Gb/s/ch-based UDWDM systems | |
Zhu et al. | Polarisation-channel-interleaved carrier-suppressed RZ ETDM/DWDM transmission at 40 Gbit/s with 0.8 bit/s/Hz spectral efficiency | |
Srivastava et al. | L-band 64/spl times/10 Gb/s DWDM transmission over 500 km DSF with 50 GHz channel spacing | |
Leng et al. | 1.6 Tb/s (40× 40 Gb/s) transmission over 500 km of nonzero dispersion fiber with 100-km amplified spans compensated by extra-high-slope dispersion-compensating fiber | |
Chandrasekhar et al. | 0.8-bit/s/Hz terabit transmission at 42.7-Gb/s using hybrid RZ-DQPSK and NRZ-DBPSK formats over 16× 80 km SSMF spans and 4 bandwidth-managed ROADMs | |
Hodzic et al. | Novel modulation format for N/spl times/40 Gbit/s WDM transmission with 50 GHz channel spacing | |
Costa et al. | Analysis of DQPSK signals performance in upgrading metropolitan area networks to 40 Gbit/s per channel | |
Pavlovic et al. | Optimized bandwidth-limited duobinary coding format for ultra dense WDM systems | |
Lavigne et al. | Real-time transmission of 34.9 Tb/s with 1-Tb/s channels over 4800 GHz-wide C-band along 1000 km of G654E fiber | |
Bigo et al. | Investigation of cross-phase modulation limitations on 10 Gbit/s transmission over various types of fiber infrastructures | |
Freund et al. | System Margin and Parameter Tolerances of Optical Transmission Sections in Metro-Networks for 40-Gbit/s-NRZ-ASK Transmission | |
Bigo | Optimising terrestrial systems for 40Gbit/s channel rate |