[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Parker, 1991 - Google Patents

Quality control in mud coring

Parker, 1991

Document ID
14282230375522933036
Author
Parker W
Publication year
Publication venue
Geo-marine letters

External Links

Snippet

Consideration of factors influencing the interaction between a corer and sediment suggest the likelihood of significant and anisotropic straining of the particle framework during coring. Direct observations allow the coring process to be discretised, the relative motion of corer …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/24Recording seismic data
    • G01V1/245Amplitude control for seismic recording
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/18Receiving elements, e.g. seismometer, geophone or torque detectors, for localised single point measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/28Processing seismic data, e.g. analysis, for interpretation, for correction
    • G01V1/36Effecting static or dynamic corrections on records, e.g. correcting spread; Correlating seismic signals; Eliminating effects of unwanted energy
    • G01V1/364Seismic filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/40Seismology; Seismic or acoustic prospecting or detecting specially adapted for well-logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/008Earthquake measurement or prediction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/02Generating seismic energy
    • G01V1/133Generating seismic energy using fluidic driving means, e.g. highly pressurised fluids; using implosion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/082Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with fields produced by spontaneous potentials, e.g. electrochemical or produced by telluric currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V5/00Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity
    • G01V5/04Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging
    • G01V5/08Prospecting or detecting by the use of nuclear radiation, e.g. of natural or induced radioactivity specially adapted for well-logging using primary nuclear radiation sources or X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V11/00GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V9/00Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00
    • G01V9/007Prospecting or detecting by methods not provided for in groups G01V1/00 - G01V8/00 by detecting gases or particles representative of underground layers at or near the surface
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • E21B49/02Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells by mechanically taking samples of the soil

Similar Documents

Publication Publication Date Title
Fletcher Spectra from high-dynamic range digital recordings of Oroville, California aftershocks and their source parameters
Larson et al. Monitoring the coastal environment; Part II: Sediment sampling and geotechnical methods
Marine Water level fluctuations due to earth tides in a well pumping from slightly fractured crystalline rock
Christian et al. Site investigations to evaluate flow liquefaction slides at Sand Heads, Fraser River delta
Parker Quality control in mud coring
Wiberg et al. Linking sediment transport and stratigraphy on the continental shelf
Matumoto et al. Microearthquake study of Mount Katmai and vicinity, Alaska
Parker et al. Observation of corer penetration and sample entry during gravity coring
Stoll et al. Shallow seismic experiments using shear waves
Kaneko et al. Low-frequency shear wave logging in unconsolidated formations for geotechnical applications
Redpath Downhole Measurements of Shear-and Compression-Wave Velocities in Boreholes C4993, C4996, C4997 and C4998 at the Waste Treatment Plant DOE Hanford Site.
Pertuz et al. Ultra-high-resolution multicomponent seismic imaging of a quick-clay landslide-prone area in southwest of Sweden
Huang et al. The tube-wave method of estimating in-situ rock fracture permeability in fluid-filled boreholes
Glassmoyer et al. Source parameters and effects of bandwidth and local geology on high-frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986
Ohya et al. The suspension PS velocity logging system
Soils et al. State-of-the-art of marine soil mechanics and foundation engineering
Sassa et al. Undrained stress-controlled dynamic-loading ring-shear test to simulate initiation and post-failure motion of landslides
Maurer et al. Determining elastic soil properties at small strains
Hueoner Jr et al. Sediment survey by Hi-Resolve system
Schultheiss In-situ pore-pressure measurements for a detailed geotechnical assessment of marine sediments: state of the art
Mccann et al. The Application Qf Borehole Acoustic Logging Techniques In Engineering Geology
Morin Geophysical logging studies in the Snake River Plain aquifer at the Idaho National Engineering Laboratory-Wells 44, 45, and 46
McCoy Controls on erosion and transport of mass by debris flows
Stephenson et al. Seismic response of soil materials around Edgecumbe, Bay of Plenty, New Zealand
Murray et al. Sedimentary Signatures of Climate Variability and Tectonic Activity in Lake Azuei, Haiti: Possible Implications for Natural Hazards