Gallilee et al., 2014 - Google Patents
Development of aluminium vacuum chambers for the LHC experiments at CERNGallilee et al., 2014
View PDF- Document ID
- 14142502905331590599
- Author
- Gallilee M
- Costa-Pinto P
- Prever-Loiri L
- Lepeule P
- Chiggiato P
- Marques Antunes Ferreira L
- Sapountzis A
- Perez-Espinos J
- Publication year
External Links
Snippet
Beam losses may cause activation of vacuum chamber walls, in particular those of the Large Hadron Collider (LHC) experiments. For the High Luminosity (HL-LHC), the activation of such vacuum chambers will increase. It is therefore necessary to use a vacuum chamber …
- 239000004411 aluminium 0 title abstract description 30
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/16—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
- C23C14/165—Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pre-treatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes, e.g. for surface treatment of objects such as coating, plating, etching, sterilising or bringing about chemical reactions
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8747631B2 (en) | Apparatus and method utilizing a double glow discharge plasma for sputter cleaning | |
US20220243072A1 (en) | Corrosion-resistant member | |
TWI831818B (en) | Anodized titanium material and manufacturing method thereof | |
KR101352775B1 (en) | Methods and apparatus for protecting plasma chamber surfaces | |
Gallilee et al. | Development of aluminium vacuum chambers for the LHC experiments at CERN | |
JP2007324353A (en) | Member for semiconductor machining device and manufacturing method therefor | |
JP2009287058A (en) | Film-forming method by direct-current reactive facing target type sputtering, pure yttria corrosion-resistant film formed with the film-forming method, and corrosion-resistant quartz assembly | |
TWI753574B (en) | Corrosion Resistant Components | |
TWI751701B (en) | Corrosion resistant components | |
EP4202079A1 (en) | Corrosion-resistant member | |
JP5162148B2 (en) | Composite and production method thereof | |
Al Mamun | Thin film studies toward improving the performance of accelerator electron sources | |
WO2024171917A1 (en) | Corrosion-resistant member | |
Saito et al. | Materials and processing of vacuum components for the high-intensity proton beam accelerator, J-PARC | |
Chauhan et al. | Development of RF based capacitively coupled plasma system for tungsten nano layer deposition on graphite | |
JP2007126731A (en) | Titanium or titanium alloy in vacuum device and method for producing the same | |
TW201708616A (en) | Cleaning method | |
Furuya | Preparation and handling of superconducting RF cavities | |
Sharma et al. | Activation studies of NEG coatings by surface techniques | |
JP2020042908A (en) | Measurement method for measuring thickness of conductive film coated on surface of metal substrate of fuel cell separator | |
Borburgh et al. | Specification for injection and extraction electrostatic septa for the synchrotron accelerator | |
Ishimaru | Aluminum alloy ultrahigh vacuum system |