Huang et al., 2018 - Google Patents
Fabrication of integrated BZY electrolyte matrices for protonic ceramic membrane fuel cells by tape-casting and solid-state reactive sinteringHuang et al., 2018
- Document ID
- 1403724621109576447
- Author
- Huang J
- Ma Y
- Cheng M
- Ruan S
- Publication year
- Publication venue
- International Journal of Hydrogen Energy
External Links
Snippet
Integrated porous/dense/porous tri-layer BaZr 0.8 Y 0.2 O 3-δ (BZY) electrolyte asymmetrical matrices were designed for protonic ceramic membrane fuel cells (PCMFCs) and fabricated by multilayer tape-casting and solid-state reactive sintering. The effects of pore-former …
- 238000005245 sintering 0 title abstract description 62
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/525—Solid Oxide Fuel Cells [SOFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1213—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
- H01M8/1226—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
- H01M4/8878—Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
- H01M4/8882—Heat treatment, e.g. drying, baking
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0289—Means for holding the electrolyte
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bi et al. | Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte | |
Nasani et al. | Fabrication and electrochemical performance of a stable, anode supported thin BaCe0. 4Zr0. 4Y0. 2O3-δ electrolyte protonic ceramic fuel cell | |
Meng et al. | A high-performance reversible protonic ceramic electrochemical cell based on a novel Sm-doped BaCe0· 7Zr0· 1Y0· 2O3-δ electrolyte | |
Bi et al. | Sinteractivity, proton conductivity and chemical stability of BaZr0. 7In0. 3O3-δ for solid oxide fuel cells (SOFCs) | |
Liu et al. | Improving the performance of the Ba0. 5Sr0. 5Co0. 8Fe0. 2O3-δ cathode for proton-conducting SOFCs by microwave sintering | |
Liu et al. | High performance of anode supported BaZr0. 1Ce0. 7Y0. 2O3− δ (BZCY) electrolyte cell for IT-SOFC | |
Zhan et al. | A solid oxide cell yielding high power density below 600° C | |
Shimada et al. | Effect of Ni diffusion into BaZr0. 1Ce0. 7Y0. 1Yb0. 1O3− δ electrolyte during high temperature co-sintering in anode-supported solid oxide fuel cells | |
Liu et al. | Enhancing sinterability and electrochemical properties of Ba (Zr0. 1Ce0. 7Y0. 2) O3-δ proton conducting electrolyte for solid oxide fuel cells by addition of NiO | |
Huang et al. | Fabrication of integrated BZY electrolyte matrices for protonic ceramic membrane fuel cells by tape-casting and solid-state reactive sintering | |
Liu et al. | A novel approach for substantially improving the sinterability of BaZr0. 4Ce0. 4Y0. 2O3− δ electrolyte for fuel cells by impregnating the green membrane with zinc nitrate as a sintering aid | |
Zhu et al. | Proton-conducting solid oxide fuel cells with yttrium-doped barium zirconate electrolyte films sintered at reduced temperatures | |
Sun et al. | Optimization of BaZr0. 1Ce0. 7Y0. 2O3− δ-based proton-conducting solid oxide fuel cells with a cobalt-free proton-blocking La0. 7Sr0. 3FeO3− δ–Ce0. 8Sm0. 2O2− δ composite cathode | |
Yang et al. | Performance and stability of BaCe0. 8− xZr0. 2InxO3− δ-based materials and reversible solid oxide cells working at intermediate temperature | |
KR101796502B1 (en) | Method of manufacturing interconnect coating layer and ceramic interconnects including the interconnect coating layer | |
Xiao et al. | Fabrication and characterization of anode-supported dense BaZr0. 8Y0. 2O3− δ electrolyte membranes by a dip-coating process | |
Yang et al. | High-performance anode-supported Solid Oxide Fuel Cells based on Ba (Zr0. 1Ce0. 7Y0. 2) O3− δ (BZCY) fabricated by a modified co-pressing process | |
Gao et al. | Symmetrical solid oxide fuel cells fabricated by phase inversion tape casting with impregnated SrFe0. 75Mo0. 25O3-δ (SFMO) electrodes | |
Vafaeenezhad et al. | Development of proton conducting fuel cells using nickel metal support | |
CN103219525B (en) | low-temperature solid oxide fuel cell and preparation method thereof | |
Ma et al. | Porous/dense bilayer BaZr0. 8Y0. 2O3-δ electrolyte matrix fabricated by tape casting combined with solid-state reactive sintering for protonic ceramic fuel cells | |
Pesaran et al. | Development of a new ceria/yttria-ceria double-doped bismuth oxide bilayer electrolyte low-temperature SOFC with higher stability | |
Huang et al. | Large-area anode-supported protonic ceramic fuel cells combining with multilayer-tape casting and hot-pressing lamination technology | |
Fashalameh et al. | A high-performance planar anode-supported solid oxide fuel cell with hierarchical porous structure through slurry-based three-dimensional printing | |
Zhang et al. | High-performance low-temperature solid oxide fuel cells using thin proton-conducting electrolyte with novel cathode |