[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Causin et al., 2005 - Google Patents

Employing glass refractive index measurement (GRIM) in fiber analysis: a simple method for evaluating the crystallinity of acrylics

Causin et al., 2005

Document ID
14093245440754712983
Author
Causin V
Marega C
Schiavone S
Marigo A
Publication year
Publication venue
Forensic science international

External Links

Snippet

The refractive index (RI) of 40 colorless acrylic fiber samples was determined by the immersion oil and Mettler hot stage method, implemented in the glass refractive index measurement (GRIM) instrument by Foster and Freeman. Low standard deviations for nearly …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/57Measuring gloss
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N2021/4704Angular selective
    • G01N2021/4711Multiangle measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/44Investigating or analysing materials by specific methods not covered by the preceding groups resins; rubber; leather
    • G01N33/445Rubber
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/87Investigating jewels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N2021/653Coherent methods [CARS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution

Similar Documents

Publication Publication Date Title
Bhargava et al. FTIR microspectroscopy of polymeric systems
Siesler Near‐infrared spectroscopy of polymers
TW310366B (en) Process to use multivariate signal responses to analyze a sample
Causin et al. A quantitative differentiation method for acrylic fibers by infrared spectroscopy
Stuart Infrared spectroscopy
Corsetti et al. Comparison of Raman and IR spectroscopy for quantitative analysis of gasoline/ethanol blends
Westerhaus et al. Quantitative analysis
Heigl et al. Near infrared spectroscopy for polymer research, quality control and reaction monitoring
CN104778349B (en) One kind is used for rice table soil nitrogen application Classified Protection
Guilment et al. Determination of polybutadiene microstructures and styrene–butadiene copolymers composition by vibrational techniques combined with chemometric treatment
Causin et al. Employing glass refractive index measurement (GRIM) in fiber analysis: a simple method for evaluating the crystallinity of acrylics
Aldridge et al. Noninvasive monitoring of bulk polymerization using short-wavelength near-infrared spectroscopy
Yang et al. Quantification of vehicle paint components containing polystyrene using pyrolysis-gas chromatography/mass spectrometry
Crawford et al. Raman spectroscopy: a comprehensive review
Zhang et al. Contributions of fourier-transform infrared spectroscopy technologies to the research of asphalt materials: A comprehensive review
JP2000159897A (en) Method for separating defective product of polymer compound
Szafarska et al. Computer analysis of ATR-FTIR spectra of paint samples for forensic purposes
Zhou et al. Applications of near infrared spectroscopy in cotton impurity and fiber quality detection: A review
Shaikh et al. Qualitative and quantitative characterization of textile material by Fourier transform infra-red
JP2003270138A (en) Hair condition discrimination method
Melling et al. Fiber-optic probes for mid-infrared spectrometry
Watari et al. Prediction of ethylene content in melt-state random and block polypropylene by near-infrared spectroscopy and chemometrics: comparison of a new calibration transfer method with a slope/bias correction method
Watari et al. Calibration models for the vinyl acetate concentration in ethylene-vinyl acetate copolymers and its on-line monitoring by near-infrared spectroscopy and chemometrics: use of band shifts associated with variations in the vinyl acetate concentration to improve the models
Lu Applications of attenuated total reflectance Fourier transform infrared spectroscopy for forensic analysis
Fischer et al. Process analysis of polymers by NIR spectroscopy