Burdinsky et al., 2015 - Google Patents
Navigation of autonomous underwater vehicles using acoustic and visual data processingBurdinsky et al., 2015
- Document ID
- 14043263361049667855
- Author
- Burdinsky I
- Myagotin A
- Publication year
- Publication venue
- Computer Vision in Control Systems-2: Innovations in Practice
External Links
Snippet
A navigation model for an Autonomous Underwater Vehicle (AUV) combines acoustic and vision-based navigation principles. The acoustic guidance is based on the Time-Of-Flight (TOF) measurements carried out in a one-way asynchronous mode. Vision-based …
- 230000000007 visual effect 0 title description 6
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/10—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/02—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
- G01S15/50—Systems of measurement, based on relative movement of the target
- G01S15/58—Velocity or trajectory determination systems; Sense-of-movement determination systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
- G01S3/80—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
- G01S3/802—Systems for determining direction or deviation from predetermined direction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
- G01S5/02—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
- G01S5/0205—Details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
- G01S13/9035—Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S1/00—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
- G01S1/72—Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
- G01S1/76—Systems for determining direction or position line
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in preceding groups
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2013545096A (en) | Estimation of the position and orientation of an underwater vehicle relative to an underwater structure | |
Medagoda et al. | Autonomous underwater vehicle localization in a spatiotemporally varying water current field | |
Masmitja et al. | Range-only single-beacon tracking of underwater targets from an autonomous vehicle: From theory to practice | |
Xu et al. | An integrated visual odometry system for underwater vehicles | |
Burdinsky et al. | Navigation of autonomous underwater vehicles using acoustic and visual data processing | |
Liu et al. | Navigation system of a class of underwater vehicle based on adaptive unscented Kalman fiter algorithm | |
Zhu et al. | Effect on Kalman based underwater tracking due to ocean current uncertainty | |
Zhu et al. | Kalman-based underwater tracking with unknown effective sound velocity | |
Vandavasi et al. | Machine learning-based electro-magnetic field guided localization technique for autonomous underwater vehicle homing | |
Burdinsky | Guidance algorithm for an autonomous unmanned underwater vehicle to a given target | |
Song et al. | Acoustic-VINS: Tightly coupled acoustic-visual-inertial navigation system for autonomous underwater vehicles | |
Salavasidis et al. | Co-operative use of marine autonomous systems to enhance navigational accuracy of autonomous underwater vehicles | |
Zhang et al. | A passive acoustic positioning algorithm based on virtual long baseline matrix window | |
Garcia et al. | Underwater robot localization using magnetic induction: Noise modeling and hardware validation | |
Miller et al. | AUV position estimation via acoustic seabed profile measurements | |
Masmitja et al. | Underwater mobile target tracking with particle filter using an autonomous vehicle | |
Morgado et al. | Experimental evaluation of a USBL underwater positioning system | |
Bingham | Navigating autonomous underwater vehicles | |
Neto et al. | Autonomous underwater vehicle to inspect hydroelectric dams | |
Pelletier | Human-autonomy teaming for improved diver navigation | |
Su et al. | Underwater passive manoeuvring target tracking with isogradient sound speed profile | |
Stanway | Delayed-state sigma point Kalman filters for underwater navigation | |
KR101837845B1 (en) | System and method for obtaining information of underwater target | |
Miller et al. | On AUV navigation based on acoustic sensing of the seabed profile | |
Yang et al. | Bayesian passive acoustic tracking of a cooperative moving source in shallow water |