[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Burdinsky et al., 2015 - Google Patents

Navigation of autonomous underwater vehicles using acoustic and visual data processing

Burdinsky et al., 2015

Document ID
14043263361049667855
Author
Burdinsky I
Myagotin A
Publication year
Publication venue
Computer Vision in Control Systems-2: Innovations in Practice

External Links

Snippet

A navigation model for an Autonomous Underwater Vehicle (AUV) combines acoustic and vision-based navigation principles. The acoustic guidance is based on the Time-Of-Flight (TOF) measurements carried out in a one-way asynchronous mode. Vision-based …
Continue reading at link.springer.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/10Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
    • G01S13/9035Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S1/00Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith
    • G01S1/72Beacons or beacon systems transmitting signals having a characteristic or characteristics capable of being detected by non-directional receivers and defining directions, positions, or position lines fixed relatively to the beacon transmitters; Receivers co-operating therewith using ultrasonic, sonic or infrasonic waves
    • G01S1/76Systems for determining direction or position line
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting

Similar Documents

Publication Publication Date Title
JP2013545096A (en) Estimation of the position and orientation of an underwater vehicle relative to an underwater structure
Medagoda et al. Autonomous underwater vehicle localization in a spatiotemporally varying water current field
Masmitja et al. Range-only single-beacon tracking of underwater targets from an autonomous vehicle: From theory to practice
Xu et al. An integrated visual odometry system for underwater vehicles
Burdinsky et al. Navigation of autonomous underwater vehicles using acoustic and visual data processing
Liu et al. Navigation system of a class of underwater vehicle based on adaptive unscented Kalman fiter algorithm
Zhu et al. Effect on Kalman based underwater tracking due to ocean current uncertainty
Zhu et al. Kalman-based underwater tracking with unknown effective sound velocity
Vandavasi et al. Machine learning-based electro-magnetic field guided localization technique for autonomous underwater vehicle homing
Burdinsky Guidance algorithm for an autonomous unmanned underwater vehicle to a given target
Song et al. Acoustic-VINS: Tightly coupled acoustic-visual-inertial navigation system for autonomous underwater vehicles
Salavasidis et al. Co-operative use of marine autonomous systems to enhance navigational accuracy of autonomous underwater vehicles
Zhang et al. A passive acoustic positioning algorithm based on virtual long baseline matrix window
Garcia et al. Underwater robot localization using magnetic induction: Noise modeling and hardware validation
Miller et al. AUV position estimation via acoustic seabed profile measurements
Masmitja et al. Underwater mobile target tracking with particle filter using an autonomous vehicle
Morgado et al. Experimental evaluation of a USBL underwater positioning system
Bingham Navigating autonomous underwater vehicles
Neto et al. Autonomous underwater vehicle to inspect hydroelectric dams
Pelletier Human-autonomy teaming for improved diver navigation
Su et al. Underwater passive manoeuvring target tracking with isogradient sound speed profile
Stanway Delayed-state sigma point Kalman filters for underwater navigation
KR101837845B1 (en) System and method for obtaining information of underwater target
Miller et al. On AUV navigation based on acoustic sensing of the seabed profile
Yang et al. Bayesian passive acoustic tracking of a cooperative moving source in shallow water