[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Altendorfer, 2017 - Google Patents

Utilising elekta LINAC and MLC controller log files for phantom-less patient specific IMRT QA

Altendorfer, 2017

View PDF
Document ID
1388748982495601473
Author
Altendorfer A
Publication year

External Links

Snippet

Introduction: Intensity-modulated radiation therapy (IMRT) is the state of the art treatment technique in external beam radiotherapy. Currently, quality assurance (QA) procedures rely mostly on phantom-based experimental measurements. However, electronic log files, which …
Continue reading at scholar.archive.org (PDF) (other versions)

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
    • A61N5/1065Beam adjustment
    • A61N5/1067Beam adjustment in real time, i.e. during treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • A61N5/1044Scanning the radiation beam, e.g. spot scanning or raster scanning with multiple repetitions of the scanning pattern
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1075Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus
    • A61N2005/1076Monitoring, verifying, controlling systems and methods for testing, calibrating, or quality assurance of the radiation treatment apparatus using a dummy object placed in the radiation field, e.g. phantom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1096Elements inserted into the radiation path placed on the patient, e.g. bags, bolus, compensators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1014Intracavitary radiation therapy

Similar Documents

Publication Publication Date Title
Paganetti Proton beam therapy
Enghardt et al. Dose quantification from in-beam positron emission tomography
JP2023528963A (en) Radiation therapy system and method for generating a treatment plan therefor
CN113877073A (en) Radiation therapy system and treatment plan generating method thereof
Shende et al. Geometrical source modeling of 6MV flattening-filter-free (FFF) beam from TrueBeam linear accelerator and its commissioning validation using Monte Carlo simulation approach for radiotherapy
Altendorfer Utilising elekta LINAC and MLC controller log files for phantom-less patient specific IMRT QA
Fielding Monte-Carlo techniques for radiotherapy applications II: equipment and source modelling, dose calculations and radiobiology
Hernández Low-dose ion-based transmission radiography and tomography for optimization of carbon ion-beam therapy
WO2021011499A1 (en) Independent stereotactic radiotherapy dose calculation and treatment plan verification
Azzi et al. THE COMPARISON OF 2D DOSE PATIENT-SPECIFIC QUALITY ASSURANCE BETWEEN MONTE CARLO-CONVOLUTION AND MODIFIED CLARKSON INTEGRATION ALGORITHM
US12138479B2 (en) Independent stereotactic radiotherapy dose calculation and treatment plan verification
Kim et al. Analysis on the photoneutron according to the varying factors and treatment planning in LINAC
Rostamzadeh Validation of Monte Carlo simulation of 6 MV photon beam delivered by the Vero4DRT linear accelerator using BEAMnrc and DOSXYZnrc
Sandnes Comparison of relative biological effectiveness in passive scattering-and pencil beam scanning proton therapy of pediatric cancer
Othman et al. Electron Beam Characteristics and Dose Profiles of 9 MeV Varian Clinac 2100C/D Linear Accelerator Using OMEGA BEAMnrc Code System
Huntelerslag Modelling Dosimetric Variations Due to Beam Delivery Parameter Perturbations
Bacala et al. Dose-volume Histograms Comparison From Two Different Beam Configurations In The Monte Carlo Simulation of 6MV Clinac2100 Using PRIMO Program
Tyson Electronic Compensation to Deliver a Total Body Radiation Dose
Blombäck Monte Carlo evaluation of static and dynamic 6FFF treatments-Evaluation of dose distributions calculated with AAA, Acuros XB, and Collapsed Cone (RayStation and DoseCheck)
Taleei et al. Helical Tomotherapy Treatment and Dosimetry
Prusator Monte Carlo Simulation for the Mevion S250 Proton Therapy System: A Topas Study
Ndiaye et al. Enhancing Precision in Radiotherapy Delivery: Validating Monte Carlo Simulation Models for 6 MV Elekta Synergy Agility LINAC Photon Beam Using Two Models of the GAMOS Code
Rank et al. Development and verification of an electron Monte Carlo engine for applications in intraoperative radiation therapy
Day A Computerised Treatment Planning System for Synchrotron Radiotherapy
Verhaegen Treatment planning for small animals