[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Nishi et al., 2020 - Google Patents

Improvement of performance of undershot cross-flow water turbines based on shock loss reduction

Nishi et al., 2020

View PDF
Document ID
13861299557719804184
Author
Nishi Y
Hatano K
Okazaki T
Yahagi Y
Inagaki T
Publication year
Publication venue
International Journal of Fluid Machinery and Systems

External Links

Snippet

Undershot cross-flow turbines are applicable to shallow open channel flows and are characterized by a simple structure free of guide vanes or a casing. Since these water turbines operate in a free surface flow field, the optimum inlet blade angle and outlet blade …
Continue reading at www.jstage.jst.go.jp (PDF) (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • Y02E10/22Conventional, e.g. with dams, turbines and waterwheels
    • Y02E10/223Turbines or waterwheels, e.g. details of the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • Y02E10/22Conventional, e.g. with dams, turbines and waterwheels
    • Y02E10/226Other parts or details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • Y02E10/28Tidal stream or damless hydropower, e.g. sea flood and ebb, river, stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
    • F05B2240/00Components
    • F05B2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
    • F05B2250/00Geometry
    • F05B2250/20Geometry three-dimensional
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO MACHINES OR ENGINES OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, TO WIND MOTORS, TO NON-POSITIVE DISPLACEMENT PUMPS, AND TO GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY
    • F05B2210/00Working fluid
    • F05B2210/16Air or water being indistinctly used as working fluid, i.e. the machine can work equally with air or water without any modification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING WEIGHT AND MISCELLANEOUS MOTORS; PRODUCING MECHANICAL POWER; OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially in wind direction
    • F03D1/04Wind motors with rotation axis substantially in wind direction having stationary wind-guiding means, e.g. with shrouds or channels

Similar Documents

Publication Publication Date Title
Patel et al. Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower
Alom et al. Arriving at the optimum overlap ratio for an elliptical-bladed Savonius rotor
Thakur et al. CFD analysis of performance improvement of the Savonius water turbine by using an impinging jet duct design
Kumar et al. Effect of design parameters on the performance of helical Darrieus hydrokinetic turbines
Arndt et al. Hydraulic turbines
Muis et al. Design and simulation of very low head axial hydraulic turbine with variation of swirl velocity criterion
Nishi et al. Improvement of performance of undershot cross-flow water turbines based on shock loss reduction
Liu et al. Performance analysis of vertical axis water turbines under single-phase water and two-phase open channel flow conditions
Fukutomi et al. Study on performance and flow condition of a cross-flow wind turbine with a symmetrical casing
Nishi et al. Study on performance and flow field of an undershot cross-flow water turbine comprising different number of blades
Nishi et al. Research on the flow field of undershot cross-flow water turbines using experiments and numerical analysis
Ruopp et al. Development of a hydro kinetic river turbine with simulation and operational measurement results in comparison
Nishi et al. The flow field of undershot cross-flow water turbines based on PIV measurements and numerical analysis
Gish et al. Experimental and numerical study on performance of shrouded hydrokinetic turbines
Kumar et al. CFD analysis of the performance of an H-Darrieus wind turbine having cavity blades
An et al. Internal Flow Phenomena of Two-Way Contra-Rotating Axial Flow Pump-Turbine in Pump Mode under Variable Speed
Nishi et al. Study on performance improvement of an axial flow hydraulic turbine with a collection device
Gupta et al. Design of a micro hydro power plant based on the vortex flow of water
Naik et al. Dimple shape effect on the aerodynamic performance of H-rotor Darrieus vertical axis wind turbine
Hemida et al. Numerical Investigation of hydrokinetic Savonius rotor with two shielding plates
Patel et al. Hydrodynamic Performance Investigation of Horizontal Axis Water Rotors
Munggau et al. Computational Study on the Influence of Duct on The Performance of Darrieus Hydro-Turbine
Marie et al. Experimental and computational comparison between Widnall and E423 shroud designs for an axial wind turbine
Oiu et al. The Flow Characteristics Investigation of the S-Shaped Region for Pump-Turbine in Small Guide Vane Opening
El-Deen et al. A Numerical Study of the Effect of Stator on Savonius Bach-Type Rotor Performance