[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Eid et al., 2021 - Google Patents

Holography-based target localization and health monitoring technique using UHF tags array

Eid et al., 2021

View PDF
Document ID
13858718211838706389
Author
Eid A
Zhu J
Xu L
Hester J
Tentzeris M
Publication year
Publication venue
IEEE Internet of Things Journal

External Links

Snippet

Radio technologies are appealing for unobtrusive and remote monitoring of human activities. Radar-based human activity recognition proves to be a success, for example, Project Soli developed by Google. However, it is expensive to scale up for multiuser …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous unmodulated waves, amplitude-, frequency- or phase-modulated waves
    • G01S13/34Systems for measuring distance only using transmission of continuous unmodulated waves, amplitude-, frequency- or phase-modulated waves using transmission of frequency-modulated waves and the received signal, or a signal derived therefrom, being heterodyned with a locally-generated signal related to the contemporaneous transmitted signal to give a beat-frequency signal
    • G01S13/347Systems for measuring distance only using transmission of continuous unmodulated waves, amplitude-, frequency- or phase-modulated waves using transmission of frequency-modulated waves and the received signal, or a signal derived therefrom, being heterodyned with a locally-generated signal related to the contemporaneous transmitted signal to give a beat-frequency signal using more than one modulation frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Details of receivers or network of receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
    • G01S13/9035Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/887Radar or analogous systems specially adapted for specific applications for detection of concealed objects, e.g. contraband or weapons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Similar Documents

Publication Publication Date Title
Islam et al. Concurrent respiration monitoring of multiple subjects by phase-comparison monopulse radar using independent component analysis (ICA) with JADE algorithm and direction of arrival (DOA)
Bhattacharya et al. Deep learning radar design for breathing and fall detection
Salmi et al. Propagation parameter estimation, modeling and measurements for ultrawideband MIMO radar
Soltanaghaei et al. Multipath triangulation: Decimeter-level wifi localization and orientation with a single unaided receiver
Mercuri et al. 2-D localization, angular separation and vital signs monitoring using a SISO FMCW radar for smart long-term health monitoring environments
Wang et al. The promise of radio analytics: A future paradigm of wireless positioning, tracking, and sensing
Xiong et al. Multitarget respiration detection with adaptive digital beamforming technique based on SIMO radar
Zhang et al. Unlocking the beamforming potential of lora for long-range multi-target respiration sensing
Feng et al. Multitarget vital signs measurement with chest motion imaging based on MIMO radar
Huang et al. Feasibility and limits of wi-fi imaging
Ozturk et al. GaitCube: Deep data cube learning for human recognition with millimeter-wave radio
Eid et al. Holography-based target localization and health monitoring technique using UHF tags array
Yan et al. Phase-based human target 2-D identification with a mobile FMCW radar platform
Islam et al. Contactless radar-based sensors: Recent advances in vital-signs monitoring of multiple subjects
Su et al. 2-D self-injection-locked Doppler radar for locating multiple people and monitoring their vital signs
Xiong et al. Vital signs detection with difference beamforming and orthogonal projection filter based on SIMO-FMCW radar
Wang et al. Multi-target vital signs detection using frequency-modulated continuous wave radar
El-Absi et al. Chipless RFID infrastructure based self-localization: Testbed evaluation
Iwata et al. Multiradar data fusion for respiratory measurement of multiple people
Guidi et al. Analysis of UWB tag backscattering and its impact on the detection coverage
Wang et al. Vital sign monitoring in dynamic environment via mmwave radar and camera fusion
Juan et al. Distributed MIMO CW radar for locating multiple people and detecting their vital signs
Wang et al. Multi-target device-free wireless sensing based on multiplexing mechanisms
Fang et al. A silicon-based adaptable edge coherent radar platform for seamless health sensing and cognitive interactions with human subjects
Xia et al. Metabreath: Multitarget respiration detection based on space-time-coding digital metasurface