Kemp et al., 1986 - Google Patents
Cryogenic Michelson interferometer spectrometer for Space Shuttle applicationKemp et al., 1986
- Document ID
- 13524760792427400004
- Author
- Kemp J
- Wellard S
- Goode D
- Huppi E
- Publication year
- Publication venue
- Infrared detectors, sensors, and focal plane arrays
External Links
Snippet
A Michelson interferometer spectrometer using a flexural pivot suspension for the moving mirror was fabricated for use at 20° K as part of the CIRRIS 1A experiment. The spectral range 2.5 to 25 μm is achieved using a potassium bromide beamsplitter. The softness of the …
- 230000003287 optical 0 abstract description 36
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/024—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using means for illuminating a slit efficiently (e.g. entrance slit of a spectrometer or entrance face of fiber)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
- G01J3/30—Measuring the intensity of spectral line directly on the spectrum itself
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/50—Radiation pyrometry using techniques specified in the subgroups below
- G01J5/52—Radiation pyrometry using techniques specified in the subgroups below using comparison with reference sources, e.g. disappearing-filament pyrometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation
- G01J5/061—Arrangements for eliminating effects of disturbing radiation using cooling or thermostating of parts of the apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1793—Remote sensing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/12—Generating the spectrum; Monochromators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/02—Details
- G01J3/0286—Constructional arrangements for compensating for fluctuations caused by temperature, humidity or pressure, or using cooling or temperature stabilization of parts of the device; Controlling the atmosphere inside a spectrometer, e.g. vacuum
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/10—Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/0003—Radiation pyrometry for sensing the radiant heat transfer of samples, e.g. emittance meter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/02—Details
- G01J1/04—Optical or mechnical part supplementary adjustable parts
- G01J1/0407—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
- G01J1/0414—Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using plane or convex mirrors, parallel phase plates, or plane beam-splitters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/02—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Barnes et al. | Prelaunch characteristics of the moderate resolution imaging spectroradiometer (MODIS) on EOS-AM1 | |
Peralta et al. | Aerosol polarimetry sensor for the Glory Mission | |
Cousins et al. | National polar-orbiting operational environmental satellite system (NPOESS) airborne sounder testbed-interferometer (NAST-I) | |
Brown et al. | The AFOE: A Spectrograph for Precision Doppler Studies | |
Soucy et al. | ACE-FTS instrument detailed design | |
Fehlmann et al. | Cryogenic near infrared spectropolarimeter for the Daniel K. Inouye Solar Telescope | |
Bartschi et al. | The spatial infrared imaging telescope III | |
Coppo et al. | Sea and Land Surface Temperature Radiometer detection assembly design and performance | |
Kemp et al. | Cryogenic Michelson interferometer spectrometer for Space Shuttle application | |
Anderegg et al. | Infrared spectroscopy with a balloon-borne Michelson interferometer. I-Instrumentation and performance | |
Brasunas et al. | Cryogenic Fourier spectrometer for measuring trace species in the lower stratosphere | |
Elliot et al. | Image Quality on the Kuiper Airborne Observatory. I. Results of the first flight series | |
Haring et al. | Current development status of the Orbiting Carbon Observatory instrument optical design | |
Vinckier et al. | The visible mid-wave Dyson imaging spectrometer (VMDIS) | |
Yoshida et al. | Prelaunch performance test results of TANSO-FTS and CAI on GOSAT | |
Keith et al. | Airborne interferometer for atmospheric emission and solar absorption | |
Henson et al. | Multispectral thermal imager optical assembly performance and integration of the flight focal plane assembly | |
Jovanovic et al. | Overview and status of the front-end instrument (FEI) Keck/HISPEC, the diffraction-limited yK band spectrograph for exoplanet characterization | |
Bender et al. | Ultra-compact imaging spectrometer for the lunar surface (UCIS-Moon): instrument alignment and laboratory optical performance | |
Samra et al. | An airborne infrared spectrometer for solar eclipse observations | |
Wishnow et al. | Visible imaging Fourier transform spectrometer: design and calibration | |
Wallner et al. | METimage–PFM status report | |
Coppo et al. | Status of the Sea & Land Surface Temperature Radiometer (SLSTR) for the Sentinel 3 GMES Mission | |
Joseph et al. | The Imperial College 41-Inch Telescope for Far-Infrared Balloon Astronomy | |
Ames et al. | Development of the SPIRIT III sensor |