Liu et al., 2011 - Google Patents
Demonstration of 2.7-PPB receiver sensitivity using PDM-QPSK with 4-PPM and unrepeatered transmission over a single 370-km unamplified ultra-large-area fiber …Liu et al., 2011
- Document ID
- 13598882273022549894
- Author
- Liu X
- Chandrasekhar S
- Wood T
- Tkach R
- Burrows E
- Winzer P
- Publication year
- Publication venue
- 2011 37th European Conference and Exhibition on Optical Communication
External Links
Snippet
Demonstration of 2.7-PPB receiver sensitivity using PDM-QPSK with 4-PPM and unrepeatered
transmission over a single 370-km unamp Page 1 Demonstration of 2.7-PPB Receiver
Sensitivity Using PDMQPSK with 4-PPM and Unrepeatered Transmission over a Single 370-km …
- 230000035945 sensitivity 0 title abstract description 15
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5053—Laser transmitters using external modulation using a parallel, i.e. shunt, combination of modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/676—Optical arrangements in the receiver for all-optical demodulation of the input optical signal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/501—Structural aspects
- H04B10/503—Laser transmitters
- H04B10/505—Laser transmitters using external modulation
- H04B10/5051—Laser transmitters using external modulation using a series, i.e. cascade, combination of modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
- H04B10/2507—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
- H04B10/2543—Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to fibre non-linearities, e.g. Kerr effect
- H04B10/2557—Cross-phase modulation [XPM]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers i.e., optical receivers using an optical local oscillator
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/69—Electrical arrangements in the receiver
- H04B10/697—Arrangements for reducing noise and distortion
- H04B10/6971—Arrangements for reducing noise and distortion using equalisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5162—Return-to-zero modulation schemes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5167—Duo-binary; Alternative mark inversion; Phase shaped binary transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/532—Polarisation modulation, e.g. polarization switching or transmission of a single data stream on two orthogonal polarizations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers i.e., optical receivers using an optical local oscillator
- H04B10/613—Coherent receivers i.e., optical receivers using an optical local oscillator including phase diversity, e.g., having in-phase and quadrature branches, as in QPSK coherent receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/07—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
- H04B10/075—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
- H04B10/079—Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
- H04B10/0795—Performance monitoring; Measurement of transmission parameters
- H04B10/07953—Monitoring or measuring OSNR, BER or Q
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/29—Repeaters
- H04B10/291—Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/112—Line-of-sight transmission over an extended range
- H04B10/1121—One-way transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/02—Wavelength-division multiplex systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B2210/00—Indexing scheme relating to optical transmission systems
- H04B2210/25—Distortion or dispersion compensation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Demonstration of record sensitivities in optically preamplified receivers by combining PDM-QPSK and M-ary pulse-position modulation | |
Liu et al. | Demonstration of record sensitivity in an optically pre-amplified receiver by combining PDM-QPSK and 16-PPM with pilot-assisted digital coherent detection | |
Zhou et al. | 64-Tb/s (640× 107-Gb/s) PDM-36QAM transmission over 320km using both pre-and post-transmission digital equalization | |
Cai et al. | Transmission of 96× 100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608 km and 400% spectral efficiency over 4,368 km | |
Yu et al. | Generation, transmission and coherent detection of 11.2 Tb/s (112× 100Gb/s) single source optical OFDM superchannel | |
Zhu et al. | Ultra-long-haul transmission of 1.2-Tb/s multicarrier no-guard-interval CO-OFDM superchannel using ultra-large-area fiber | |
Xie | Interchannel nonlinearities in coherent polarization-division-multiplexed quadrature-phase-shift-keying systems | |
Dong et al. | 7$\,\times\, $224 Gb/s/ch Nyquist-WDM Transmission Over 1600-km SMF-28 Using PDM-CSRZ-QPSK Modulation | |
Cai et al. | 112× 112 Gb/s transmission over 9,360 km with channel spacing set to the baud rate (360% spectral efficiency) | |
Liu et al. | Demonstration of 2.7-PPB receiver sensitivity using PDM-QPSK with 4-PPM and unrepeatered transmission over a single 370-km unamplified ultra-large-area fiber span | |
Diaz et al. | Analysis of back-propagation and RF pilot-tone based nonlinearity compensation for a 9× 224Gb/s POLMUX-16QAM system | |
Eriksson et al. | Experimental demonstration of 128-SP-QAM in uncompensated long-haul transmission | |
Alfiad et al. | 111-Gb/s POLMUX-RZ-DQPSK transmission over 1140 km of SSMF with 10.7-Gb/s NRZ-OOK neighbours | |
Xie et al. | Comparison of RZ and NRZ formats in 112-Gb/s PDM-QPSK long haul coherent transmission systems | |
Chung et al. | Dual-carrier DQPSK based 112 Gb/s signal transmission over 480 km of SMF link carrying 10 Gb/s NRZ channels | |
Maeda et al. | Ultra-long-span 500 km 16× 10 Gbit/s WDM unrepeatered transmission using RZ-DPSK format | |
Zhou et al. | Advanced coherent modulation formats and algorithms: Higher-order multi-level coding for high-capacity system based on 100Gbps channel | |
Zhou et al. | 2Tb/s (20× 107 Gb/s) RZ-DQPSK straight-line transmission over 1005 km of standard single mode fiber (SSMF) without Raman amplification | |
Van Den Borne et al. | 1.6-b/s/Hz Spectrally Efficient 40⨉ 85.6-Gb/s Transmission Over 1,700 km of SSMF Using POLMUX-RZ-DQPSK | |
Charlet et al. | Ultra-long haul submarine transmission | |
Chandrasekhar et al. | High sensitivity modulation formats | |
Fischer et al. | Experimental investigation of 28-GBd polarization-switched quadrature phase-shift keying signals | |
Renaudier et al. | Impact of temporal interleaving of polarization tributaries onto 100-Gb/s coherent transmission systems with RZ pulse carving | |
Liu et al. | Optical technologies and techniques for high bit rate fiber transmission | |
Meloni et al. | Unrepeated link distance increase for 448 Gb/s channel transmission by using large core area fiber |