[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Berkouk et al., 2001 - Google Patents

Analytical calculation of ironless loudspeaker motors

Berkouk et al., 2001

View PDF
Document ID
13542667252690204170
Author
Berkouk M
Lemarquand V
Lemarquand G
Publication year
Publication venue
IEEE transactions on magnetics

External Links

Snippet

This paper analyzes a concept for ironless loudspeaker motors. The structure is a torus with a cylindrical air gap, formed by toroidal permanent magnets with a triangular cross section. The advantage of this design is that it permits control of the magnetic field inside the …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/383Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0072Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
    • H01F1/0081Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures in a non-magnetic matrix, e.g. Fe-nanowires in a nanoporous membrane
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0273Magnetic circuits with PM for magnetic field generation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Metals or alloys
    • H01F1/06Metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Metals or alloys
    • H01F1/20Metals or alloys in the form of particles, e.g. powder
    • H01F1/22Metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0555Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 pressed, sintered or bonded together
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures

Similar Documents

Publication Publication Date Title
Berkouk et al. Analytical calculation of ironless loudspeaker motors
Moskowitz et al. Theoretical aspects of demagnetization tensors
WO1998007362A3 (en) Planar open magnet MRI system
Leupold et al. Applications of yokeless flux confinement
Mörée et al. A review of permanent magnet models used for designing electrical machines
Glehn et al. Pulsed-field magnetometer measurements and pragmatic hysteresis modeling of rare-earth permanent magnets
Bjørk et al. A topology optimized switchable permanent magnet system
Lee et al. Geometrical enhancements to permanent magnet flux sources: application to energy efficient magnetocaloric refrigeration systems
JPH0423411A (en) Magnetic field producing device for mri
Yao et al. Magnetic properties analysis of novel composite magnetic materials for HSPMSMs
Crangle et al. Units and unity in magnetism: a call for consistency
Watterson Energy calculation of a permanent magnet system by surface and flux integrals (the flux-mmf method)
Leupold et al. Design applications of magnetic mirrors
Sha et al. Magnetization state and magnetic structure of Wiegand wire evaluated by external magnetic field measurement
Ramirez et al. Sensitivity analysis for the automatic shape design of electromagnetic devices in 3D using FEM
JPS61218120A (en) Magnetic field generator
Freedberg et al. Effect of demagnetization technique on remanence measurements in metallic ferromagnets
Wu et al. Micromagnetic simulation of high frequency magnetic characteristics for Fe-based nanocrystalline alloy
Zheng et al. 3-D FEM micromagnetic modeling of spin-valve sensors
Campbell et al. A multi-axis model of magnetization for isotropic permanent magnets
Isogami et al. Fabrication of Multipole Magnets with Enhanced Flux Density Using Anisotropic Bond Magnets for Miniature Optical Pickup Devices
Takahashi et al. Effect of minor loop on magnetic characteristics of permanent magnet type of MRI
Bertora et al. Special-purpose MRI equipment for medical and industrial applications
Gabay et al. Simulation of intergranular interaction in sintered magnets
Zhilichev et al. Hysteresis model and magnetization of a radially anisotropic magnet ring