Su et al., 2019 - Google Patents
Broadband LEO satellite communications: Architectures and key technologiesSu et al., 2019
- Document ID
- 13407351232681432139
- Author
- Su Y
- Liu Y
- Zhou Y
- Yuan J
- Cao H
- Shi J
- Publication year
- Publication venue
- IEEE Wireless Communications
External Links
Snippet
This article aims to provide a comprehensive overview for key issues in broadband LEO satellite communication systems. First of all, the network architecture is introduced, which is the basis of the whole system. The space-based LEO system with ISL, which requires a …
- 241000282322 Panthera 0 title abstract description 15
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18539—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18513—Transmission in a satellite or space-based system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/19—Earth-synchronous stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18545—Arrangements for managing station mobility, i.e. for station registration or localisation
- H04B7/18547—Arrangements for managing station mobility, i.e. for station registration or localisation for geolocalisation of a station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18502—Airborne stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/204—Multiple access
- H04B7/2041—Spot beam multiple access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0491—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more sectors, i.e. sector diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/24—Cell structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/24—Radio transmission systems, i.e. using radiation field for communication between two or more posts
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/12—Fixed resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
- H04W84/04—Large scale networks; Deep hierarchical networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/16—Performing reselection for specific purposes
- H04W36/18—Performing reselection for specific purposes for allowing seamless reselection, e.g. soft reselection
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q1/00—Details of, or arrangements associated with, aerials
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
- H01Q1/241—Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
- H01Q3/2605—Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—AERIALS
- H01Q25/00—Aerials or aerial systems providing at least two radiating patterns
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Su et al. | Broadband LEO satellite communications: Architectures and key technologies | |
Di et al. | Ultra-dense LEO: Integration of satellite access networks into 5G and beyond | |
Zhu et al. | Integrated satellite-terrestrial networks toward 6G: Architectures, applications, and challenges | |
Godara | Handbook of antennas in wireless communications | |
Al Homssi et al. | Next generation mega satellite networks for access equality: Opportunities, challenges, and performance | |
US6018659A (en) | Airborne broadband communication network | |
CA2590791C (en) | Satellite communication system employing a combination of time slots and orthogonal codes | |
RU2121225C1 (en) | Methods for operating satellite communication system, its operation control process, and system for controlling antenna coverage of non- geostationary orbital multiple-satellite system | |
US6714521B2 (en) | System and method for implementing a constellation of non-geostationary satellites that provides simplified satellite tracking | |
Caini et al. | A spectrum-and power-efficient EHF mobile satellite system to be integrated with terrestrial cellular systems | |
CA2590268C (en) | Satellite communication system for communicating packet data messages | |
CN112039575B (en) | Method for realizing compatible coexistence of newly-built and existing NGSO constellation communication systems | |
US9461733B2 (en) | Device and method for optimizing the ground coverage of a hybrid space system | |
JPH08500216A (en) | Beam compensation method for satellite communication system | |
Sadek et al. | Personal satellite communication: Technologies and challenges | |
Al-Hraishawi et al. | Broadband non-geostationary satellite communication systems: Research challenges and key opportunities | |
Gaber et al. | 5G and satellite network convergence: Survey for opportunities, challenges and enabler technologies | |
Hokazono et al. | Extreme coverage extension in 6G: Cooperative non-terrestrial network architecture integrating terrestrial networks | |
EP3369189A2 (en) | Satellite system having increased communications capacity and methods for increasing the capacity of satellite systems | |
JPH06503458A (en) | Low orbit satellite communication system for terminals | |
JPH05167487A (en) | Low-orbit satellite communication system for movable terminal and paylod for satellite thereof | |
Lagunas et al. | Beam splash mitigation for ngso spectrum coexistence between feeder and user downlink | |
Ilcev | Space division multiple access (SDMA) applicable for mobile satellite communications | |
WO2002017675A2 (en) | Airborne cellular communications system | |
EP4503472A1 (en) | Method for providing radio coverage to user equipments of or connected to a mobile communication network by means of a non-terrestrial antenna entity or functionality, system or mobile communication network, user equipment, non-terrestrial antenna entity or functionality, program and computer-readable medium |