[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Ntontin et al., 2021 - Google Patents

Optimal reconfigurable intelligent surface placement in millimeter-wave communications

Ntontin et al., 2021

View PDF
Document ID
13474173979400858133
Author
Ntontin K
Selimis D
Boulogeorgos A
Alexandridis A
Tsolis A
Vlachodimitropoulos V
Lazarakis F
Publication year
Publication venue
2021 15th European Conference on Antennas and Propagation (EuCAP)

External Links

Snippet

In this work, we examine the use of reconfigurable intelligent surfaces (RISs) to create alternative paths from a transmitter to a receiver in millimeter-wave (mmWave) networks, when the direct link is blocked. In this direction, we evaluate the end-to-end signal-to-noise …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15528Control of operation parameters of a relay station to exploit the physical medium
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • H01Q19/10Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • H01Q19/06Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • H01Q19/28Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/446Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element the radiating element being at the centre of one or more rings of auxiliary elements
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q25/00Aerials or aerial systems providing at least two radiating patterns
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/0018Near-field transmission systems, e.g. inductive loop type using leaky or radiating cables, e.g. leaky coaxial cables or power lines for inductive transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies

Similar Documents

Publication Publication Date Title
Ntontin et al. Optimal reconfigurable intelligent surface placement in millimeter-wave communications
Ma et al. Enhancing cellular communications for UAVs via intelligent reflective surface
Ntontin et al. Reconfigurable intelligent surface optimal placement in millimeter-wave networks
Alfattani et al. Aerial platforms with reconfigurable smart surfaces for 5G and beyond
Dabiri et al. 3D channel characterization and performance analysis of UAV-assisted millimeter wave links
Zhu et al. Demystifying 60GHz outdoor picocells
JP6772166B2 (en) Improved data transfer speed
Dabiri et al. 3D uplink channel modeling of UAV-based mmWave fronthaul links for future small cell networks
Alexandropoulos et al. Smart wireless environments enabled by RISs: Deployment scenarios and two key challenges
Abadi et al. Dual purpose antenna for hybrid free space optics/RF communication systems
Singh et al. Wavefront engineering at terahertz frequencies through intelligent reflecting surfaces
WO2015120417A2 (en) Wideband antenna star array
Loscri et al. BEST-RIM: a mmWave beam steering approach based on computer vision-enhanced reconfigurable intelligent metasurfaces
Bressner et al. High-gain lens-horn antennas for energy-efficient 5G millimeter-wave communication infrastructure
Li et al. Two-step beamforming scheme for large-dimension reconfigurable intelligent surface
Majed et al. Propagation path loss modeling and outdoor coverage measurements review in millimeter wave bands for 5G cellular communications
Aziz et al. Deployment of a UAV-mounted intelligent reflecting surface in the THz band
Dabiri et al. Downlink interference analysis of UAV-based mmwave fronthaul for small cell networks
Abbas et al. Performance analysis of indoor thz networks with intelligent reflective surfaces
Bressner et al. Elliptical dual-polarized high gain horn antenna for cell partitioning in millimeter-wave mobile communications
Yun et al. Energy efficiency of relay operation in millimeter-wave mobile broadband systems
Stratidakis et al. Impact of reconfigurable intelligent surface size on beamforming efficiency
Majed et al. Propagation path loss modeling and coverage measurements in urban microcell in millimeter wave frequency bands
Cui et al. Impact of reconfigurable intelligent surface geometry on communication performance
Sheeba Kumari et al. Outdoor millimeter-wave channel modeling for uniform coverage without beam steering