Li et al., 2020 - Google Patents
Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode materialLi et al., 2020
- Document ID
- 13447333192588016799
- Author
- Li Y
- Wang L
- Qu Y
- Wang B
- Yu J
- Song D
- Duan C
- Yang Y
- Publication year
- Publication venue
- Ionics
External Links
Snippet
A unique 3D bilayer nanostructure constructed with NiCo-layered double hydroxide nanosheets (NiCo LDH) has been constructed as an excellent electrode material. Herein, carbon cloth@ basic cobalt carbonate nanosheet (CC@ CCH NS) precursor is synthesized …
- 239000007772 electrode material 0 title abstract description 29
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/124—Alkaline secondary batteries, e.g. NiCd or NiMH
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors [EDLCs]; Processes specially adapted for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their materials
- H01G11/32—Carbon-based, e.g. activated carbon materials
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Natarajan et al. | Building next-generation supercapacitors with battery type Ni (OH) 2 | |
Zhou et al. | Sulfuration of NiV-layered double hydroxide towards novel supercapacitor electrode with enhanced performance | |
Zhang et al. | Self-supported 3D layered zinc/nickel metal-organic-framework with enhanced performance for supercapacitors | |
Saray et al. | Mesoporous MnNiCoO4@ MnO2 core-shell nanowire/nanosheet arrays on flexible carbon cloth for high-performance supercapacitors | |
Liu et al. | Porous oxygen-doped NiCoP nanoneedles for high performance hybrid supercapacitor | |
Guo et al. | Double layers combined with MXene and in situ grown NiAl-LDH arrays on nickel foam for enhanced asymmetric supercapacitors | |
Ren et al. | In-situ transformation of Ni foam into sandwich nanostructured Co1. 29Ni1. 71O4 nanoparticle@ CoNi2S4 nanosheet networks for high-performance asymmetric supercapacitors | |
Wang et al. | Advanced supercapacitors based on α-Ni (OH) 2 nanoplates/graphene composite electrodes with high energy and power density | |
Chai et al. | In-situ growth of NiAl layered double hydroxides on Ni-based metal-organic framework derived hierarchical carbon as high performance material for Zn-ion batteries | |
Li et al. | Unique 3D bilayer nanostructure basic cobalt carbonate@ NiCo–layered double hydroxide nanosheets on carbon cloth for supercapacitor electrode material | |
Xuan et al. | Rational design of hierarchical core-shell structured CoMoO4@ CoS composites on reduced graphene oxide for supercapacitors with enhanced electrochemical performance | |
Ma et al. | String-like core-shell ZnCo 2 O 4@ NiWO 4 nanowire/nanosheet arrays on Ni foam for binder-free supercapacitor electrodes | |
Liu et al. | 3D nanoflower-like MoS2 grown on wheat straw cellulose carbon for lithium-ion battery anode material | |
Wang et al. | Facile preparation of Ni–Mn layered double hydroxide nanosheets/carbon for supercapacitor | |
Wang et al. | Towards unlocking high-performance of supercapacitors: From layered transition-metal hydroxide electrode to redox electrolyte | |
Feng et al. | High performance of electrochemically deposited NiCo2S4/CNT composites on nickel foam in flexible asymmetric supercapacitors | |
Li et al. | Self-supported NiSe@ Ni 3 S 2 core-shell composite on Ni foam for a high-performance asymmetric supercapacitor | |
Wang et al. | Rational design of Co–Ni layered double hydroxides electrodeposited on Co3O4 nanoneedles derived from 2D metal-organic frameworks for high-performance asymmetric supercapacitors | |
Liu et al. | Hexadecyl trimethyl ammonium bromide assisted growth of NiCo 2 O 4@ reduced graphene oxide/nickel foam nanoneedle arrays with enhanced performance for supercapacitor electrodes | |
Mu et al. | Three dimensional bimetallic phosphides nanoneedle arrays as electrode materials for symmetric all-solid-state supercapacitor | |
Liao et al. | Hierarchical self-supported Ni (OH) 2@ Ni12P5 for supercapacitor electrodes with ultra-high area ratio capacitance | |
Chen et al. | MXene-coated nickel ion-exchanged ZIF skeleton-cavity layered double hydroxides for supercapacitors | |
Wu et al. | One-step synthesis of NiCo-MOF@ LDH hybrid nanosheets for high-performance supercapacitor | |
Guo et al. | High-performance supercapacitors based on flower-like FexCo3-xO4 electrodes | |
Zhang et al. | Electrodeposition synthesis of reduced graphdiyne oxide/NiCo2S4 hierarchical nanosheet arrays for small size and light weight aqueous asymmetry supercapacitors |