[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Paranthaman et al., 2009 - Google Patents

Optimization of various culture media for tannase production in submerged fermentation by Aspergillus flavus

Paranthaman et al., 2009

View PDF
Document ID
133261967153824894
Author
Paranthaman R
Vidyalakshmi R
Murugesh S
Singaravadivel K
Publication year
Publication venue
Advances in biological research

External Links

Snippet

Tannase, produced from the fungus Aspergillus flavus by submerged fermentation on different medium was studied. Tannic acid 1 had a higher activity of 70 U/g/min in purified form. The process parameter was optimized and higher production of tannase was found at …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Micro-organisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving micro-organisms or compositions thereof; Processes of preparing or isolating a composition containing a micro-organism; Culture media therefor
    • C12N1/14Fungi Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Micro-organisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving micro-organisms or compositions thereof; Processes of preparing or isolating a composition containing a micro-organism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RPROCESSES USING MICRO-ORGANISMS
    • C12R1/00Processes using micro-organisms
    • C12R1/645Processes using micro-organisms using fungi
    • C12R1/80Pencillium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using micro-organisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICRO-ORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING OR MAINTAINING MICRO-ORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01041Methylmalonyl-CoA decarboxylase (4.1.1.41)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS

Similar Documents

Publication Publication Date Title
Souza et al. Production, purification and characterization of an aspartic protease from Aspergillus foetidus
Elibol et al. Influence of oxygen transfer on lipase production by Rhizopus arrhizus
Naidu et al. Production of pectolytic enzymes–a review
Kashmiri et al. Production, purification and partial characterization of lipase from Trichoderma viride
Uma et al. Production and properties of invertase from a Cladosporium cladosporioides in SmF using pomegranate peel waste as substrate
Puri et al. Production and optimization of amylase and glucoamylase using Aspergillus oryzae under solid state fermentation
Paranthaman et al. Optimization of various culture media for tannase production in submerged fermentation by Aspergillus flavus
Padhiar et al. Optimization of process parameters influencing the submerged fermentation of extracellular lipases from Pseudomonas aeruginosa, Candida albicans and Aspergillus flavus
Ayansina et al. Characterization of amylase from some Aspergillus and Bacillus species associated with cassava waste peels
Kar et al. Partial characterization and optimization of extracellular thermostable Ca²⁺ inhibited α-amylase production by Streptomyces erumpens MTCC 7317
Reddy et al. Effect of aeration on the production of hemicellulases by T. lanuginosus SSBP in a 30 l bioreactor
Guruk et al. Production and biochemical characterization of cellulase enzyme by trichoderma strains from harran plain
Elmarzugi et al. Production of α-amylase using new strain of Bacillus polymyxa isolated from sweet potato
Souza et al. Prospection of Filamentous Fungi and the Production of Amylase by Aspergillus sp. M1. 7.2
Paranthaman et al. Optimization of fermentation conditions for production of tannase enzyme by Aspergillus oryzae using sugarcane baggasse and rice straw
Hmood et al. Optimum conditions for fibrinolytic enzyme (Nattokinase) production by Bacillus sp. B24 using solid state fermentation
El-Sayed et al. Characteristics and kinetics of thermophilic actinomycetesʼ amylase production on agro-wastes and its application for ethanol fermentation
Varbanets et al. Marine actinobacteria–producers of enzymes with Α-l-rhamnosidase activity
Dasari et al. Optimization and production of protease using Aspergillus cervinus
Parashar et al. Production of Microbial Enzyme Triacylglycerol Acyl Hydrolases by Aspergillus Sydowii Jpg01 in Submerged Fermentation Using Agro-residues
JAVED OF RHIZOPLIS OLIGOSPOROUST".-31
Karanja et al. Optimization of growth conditions and characterization of enzymatic activity of selected novel Streptomyces species from Kenyan soils
Veetil et al. Characterization of Alcaligenes faecalis GPA-1 producing thermostable extracellular α-amylase
Li et al. A Newly isolated Rhizopus microsporus var. chinensis capable of secreting amyloytic enzymes with raw-starch-digesting activity
KR102720616B1 (en) Novel Pseudomonas fluorescens Solbio-1 strain