Long et al., 2024 - Google Patents
Heterogeneous Structures Consisting of Rod‐like ZnO Interspersed with Ce2S3 Nanoparticles for Photo‐Sensitive Supercapacitors with Enhanced Capacitive …Long et al., 2024
- Document ID
- 13236255949326423517
- Author
- Long W
- Li T
- Luo Q
- Li W
- Zhang H
- Tan H
- Ren Z
- Publication year
- Publication venue
- Small
External Links
Snippet
Photosensitive supercapacitors incorporate light‐sensitive materials on capacitive electrodes, enabling solar energy conversion and storage in one device. In this study, heterogeneous structures of rod‐shaped ZnO decorated with Ce2S3 nanoparticles on nickel …
- 239000002105 nanoparticle 0 title abstract description 14
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/542—Dye sensitized solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/20—Light-sensitive devices
- H01G9/2027—Light-sensitive devices comprising an oxide semiconductor electrode
- H01G9/2031—Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Quantum dot–sensitized solar cells featuring CuS/CoS electrodes provide 4.1% efficiency | |
Heiniger et al. | Mesoporous TiO2 beads offer improved mass transport for cobalt‐based redox couples leading to high efficiency dye‐sensitized solar cells | |
Li et al. | Unique Zn-doped SnO 2 nano-echinus with excellent electron transport and light harvesting properties as photoanode materials for high performance dye-sensitized solar cell | |
Shao et al. | High Efficiency Semiconductor‐Liquid Junction Solar Cells based on Cu/Cu2O | |
Gao et al. | ZnO nanocrystallite aggregates synthesized through interface precipitation for dye-sensitized solar cells | |
Yang et al. | CdHgTe and CdTe quantum dot solar cells displaying an energy conversion efficiency exceeding 2% | |
Long et al. | Heterogeneous Structures Consisting of Rod‐like ZnO Interspersed with Ce2S3 Nanoparticles for Photo‐Sensitive Supercapacitors with Enhanced Capacitive Performance | |
Zhang et al. | Multiplying Light Harvest Driven by Hybrid‐Reflections 3D Electrodes Achieves High‐Availability Photo‐Charging Zinc‐Ion Batteries | |
Shi et al. | NiCo2O4 Nanostructures as a Promising Alternative for NiO Photocathodes in p‐Type Dye‐Sensitized Solar Cells with High Efficiency | |
Zalas et al. | The Influence of Titania Electrode Modification with Lanthanide Ions Containing Thin Layer on the Performance of Dye‐Sensitized Solar Cells | |
Andriamiadamanana et al. | Light‐induced charge separation in mixed electronic/ionic semiconductor driving lithium‐ion transfer for photo‐rechargeable electrode | |
Shi et al. | Asymmetric ZnO Panel‐Like Hierarchical Architectures with Highly Interconnected Pathways for Free‐Electron Transport and Photovoltaic Improvements | |
CN103560014B (en) | Dye-sensitized cell is with to electrode, its preparation method and dye-sensitized cell | |
Palve et al. | A simple chemical route to synthesis the CuSe and CuS counter electrodes for titanium oxide based quantum dot solar cells | |
Li et al. | Incorporating Zn2SnO4 Quantum Dots and Aggregates for Enhanced Performance in Dye‐Sensitized ZnO Solar Cells | |
Wang et al. | 3D cathodes of cupric oxide nanosheets coated onto macroporous antimony‐doped tin oxide for photoelectrochemical water splitting | |
Wang et al. | Fe2O3/FePO4/FeOOH ternary stepped energy band heterojunction photoanode with cascade‐driven charge transfer and enhanced photoelectrochemical performance | |
Zheng et al. | Photo-supercapacitor based on quantum dot-sensitized solar cells and active carbon supercapacitors | |
Lan et al. | Smart solar–metal–air batteries based on BiOCl photocorrosion for monolithic solar energy conversion and storage | |
Jiang et al. | Synthesis of cauliflower-like ZnO–TiO2 composite porous film and photoelectrical properties | |
Kadachi et al. | Effect of TiO2 blocking layer synthesised by a sol–gel method in performances of fluorine‐doped tin oxide/TiO2/dyed‐TiO2/electrolyte/pt/fluorine‐doped tin oxide solar cells based on natural mallow dye | |
Ding et al. | A stable and efficient quasi-solid-state photo/betavoltaic-powered electrochemical cell based on 3-dimensional CdS/ZnO heterostructure | |
Peng et al. | Tin Oxide Microspheres with Exposed {101} Facets for Dye‐sensitized Solar Cells: Enhanced Photocurrent and Photovoltage | |
Sahai et al. | Augmented photoelectrochemical response of CdS/ZnS quantum dots sensitized hematite photoelectrode | |
Tian et al. | Low‐Temperature Synthesis of SnO2 Nanocrystals as Electron Transport Layers for High‐Efficiency CsPbI2Br Perovskite Solar Cells |