Deng et al., 2009 - Google Patents
A fast hardware implementation of multiplicative inversion in GF (2 m)Deng et al., 2009
- Document ID
- 13227943572379588349
- Author
- Deng Q
- Bai X
- Guo L
- Wang Y
- Publication year
- Publication venue
- 2009 Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics (PrimeAsia)
External Links
Snippet
In this paper, a fast hardware implementation of multiplicative inversion in GF (2 m) using the optimal normal basis of type II is presented. The approach followed is based on the Sunar- Koc multiplier and the Itoh-Tsujii algorithm. Our design is able to compute multiplicative …
- 125000004122 cyclic group 0 description 11
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/53—Multiplying only in parallel-parallel fashion, i.e. both operands being entered in parallel
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/724—Finite field arithmetic
- G06F7/726—Inversion; Reciprocal calculation; Division of elements of a finite field
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
- G06F7/533—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even
- G06F7/5334—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product
- G06F7/5336—Reduction of the number of iteration steps or stages, e.g. using the Booth algorithm, log-sum, odd-even by using multiple bit scanning, i.e. by decoding groups of successive multiplier bits in order to select an appropriate precalculated multiple of the multiplicand as a partial product overlapped, i.e. with successive bitgroups sharing one or more bits being recoded into signed digit representation, e.g. using the Modified Booth Algorithm
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
- G06F7/5443—Sum of products
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/60—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
- G06F7/72—Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers using residue arithmetic
- G06F7/724—Finite field arithmetic
- G06F7/725—Finite field arithmetic over elliptic curves
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/50—Adding; Subtracting
- G06F7/505—Adding; Subtracting in bit-parallel fashion, i.e. having a different digit-handling circuit for each denomination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/38—Indexing scheme relating to groups G06F7/38 - G06F7/575
- G06F2207/3804—Details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/14—Fourier, Walsh or analogous domain transformations, e.g. Laplace, Hilbert, Karhunen-Loeve, transforms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2207/00—Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F2207/72—Indexing scheme relating to groups G06F7/72 - G06F7/729
- G06F2207/7209—Calculation via subfield, i.e. the subfield being GF(q) with q a prime power, e.g. GF ((2**m)**n) via GF(2**m)
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
-
- H—ELECTRICITY
- H03—BASIC ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M13/00—Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
- H03M13/03—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
- H03M13/05—Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
- H03M13/13—Linear codes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Reyhani-Masoleh | Efficient algorithms and architectures for field multiplication using Gaussian normal bases | |
Azarderakhsh et al. | Low-complexity multiplier architectures for single and hybrid-double multiplications in Gaussian normal bases | |
Li et al. | High-Performance Pipelined Architecture of Elliptic Curve Scalar Multiplication Over GF (${2}^{m} $) | |
CN103793199B (en) | A kind of fast rsa password coprocessor supporting dual domain | |
Liu et al. | High performance FPGA implementation of elliptic curve cryptography over binary fields | |
Li et al. | High-performance pipelined architecture of point multiplication on Koblitz curves | |
Meher et al. | Low-Latency, Low-Area, and Scalable Systolic-Like Modular Multipliers for $ GF (2^{m}) $ Based on Irreducible All-One Polynomials | |
Tian et al. | Ultra-fast modular multiplication implementation for isogeny-based post-quantum cryptography | |
Huang et al. | Non-XOR approach for low-cost bit-parallel polynomial basis multiplier over GF (2m) | |
Chiou et al. | Low-complexity Gaussian normal basis multiplier over GF (2m) | |
Namin et al. | A new finite-field multiplier using redundant representation | |
Deng et al. | A fast hardware implementation of multiplicative inversion in GF (2 m) | |
Talapatra et al. | Unified digit serial systolic Montgomery multiplication architecture for special classes of polynomials over GF (2m) | |
Lee | Super Digit-Serial Systolic Multiplier over GF (2^ m) | |
Kadu et al. | Hardware implementation of efficient elliptic curve scalar multiplication using vedic multiplier | |
Meher | Systolic formulation for low-complexity serial-parallel implementation of unified finite field multiplication over GF (2 m) | |
Kadu et al. | A novel efficient hardware implementation of elliptic curve cryptography scalar multiplication using vedic multiplier | |
Wen et al. | A Length-Scalable Modular Multiplier Implemented with Multi-bit Scanning | |
WO2017037729A1 (en) | Concurrent architecture of vedic multiplier-an accelerator scheme for high speed computing | |
Zhao et al. | Exploring the speed limit of SM2 | |
Ibrahim et al. | New and improved word-based unified and scalable architecture for radix 2 Montgomery modular multiplication algorithm | |
da Costa et al. | Design of a 1024 bit RSA coprocessor with SPI slave interface | |
Thirumoorthi et al. | A High Speed and Area Efficient Processor for Elliptic Curve Scalar Point Multiplication for GF ($2^ m $) | |
Madhuri et al. | Analysis of reconfigurable multipliers for integer and Galois field multiplication based on high speed adders | |
Wu et al. | Optimized Design of ECC Point Multiplication Algorithm Over GF (2m) |