Abe et al., 2022 - Google Patents
Electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode recovered from pyrolysis residue of waste Li-ion batteriesAbe et al., 2022
View PDF- Document ID
- 13264713929687030219
- Author
- Abe Y
- Sawa K
- Tomioka M
- Watanabe R
- Yodose T
- Kumagai S
- Publication year
- Publication venue
- Journal of Electroanalytical Chemistry
External Links
Snippet
A methodology for time-effective, automatic, and safe extraction of cathode active materials from waste lithium-ion battery (LIB) stacks without complex mechanical disassembly and using electrically and chemically harmless processes can be beneficial for the sustainable …
- 229910001416 lithium ion 0 title abstract description 84
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/366—Composites as layered products
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/446—Initial charging measures
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yi et al. | A green and facile approach for regeneration of graphite from spent lithium ion battery | |
Chen et al. | Chemical coupling constructs amorphous silica modified LiNi0. 6Co0. 2Mn0. 2O2 cathode materials and its electrochemical performances | |
Fan et al. | Superior Stable Self-Healing SnP 3 Anode for Sodium-Ion Batteries. | |
JP6210439B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the cathode active material | |
Shi et al. | Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries | |
Kim et al. | Surface engineering of graphite anode material with black TiO2-x for fast chargeable lithium ion battery | |
Ren et al. | The impact of aluminum impurity on the regenerated lithium nickel cobalt manganese oxide cathode materials from spent LIBs | |
Du et al. | A unique co-recovery strategy of cathode and anode from spent LiFePO4 battery | |
JP5701854B2 (en) | Electrode active material composite and secondary battery including the same | |
US11127992B2 (en) | Charge material for recycled lithium-ion batteries | |
Wu et al. | Studies on electrochemical reversibility of lithium tungstate coated Ni-rich LiNi0. 8Co0. 1Mn0. 1O2 cathode material under high cut-off voltage cycling | |
Ma et al. | Molten salt-assisted regeneration and characterization of submicron-sized LiNi0. 5Co0. 2Mn0. 3O2 crystals from spent lithium ion batteries | |
Hsieh et al. | A germanium nanoparticles/molybdenum disulphide (MoS 2) nanocomposite as a high-capacity, high-rate anode material for lithium-ion batteries | |
Jo et al. | Effects of residual lithium in the precursors of Li [Ni1/3Co1/3Mn1/3] O2 on their lithium-ion battery performance | |
Chae et al. | Effect of surface modification using a sulfate-based surfactant on the electrochemical performance of Ni-rich cathode materials | |
WO2012090749A1 (en) | Method of manufacturing a positive electrode active material for lithium secondary batteries | |
Gastol et al. | Reclaimed and up‐cycled cathodes for lithium‐ion batteries | |
Wang et al. | Structural degradation of Ni-rich layered oxide cathode for Li-ion batteries | |
Hao et al. | Enhancing electrochemical performances of LiNi0. 5Co0. 2Mn0. 3O2 cathode materials derived from NiF2 artificial interface at elevated voltage | |
Wu et al. | Effect of Cu substitution on structures and electrochemical properties of Li [NiCo 1− x Cu x Mn] 1/3 O 2 as cathode materials for lithium ion batteries | |
Lee et al. | Recycling of Ni-rich Li (Ni0. 8Co0. 1Mn0. 1) O2 cathode materials by a thermomechanical method | |
Abe et al. | Electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode recovered from pyrolysis residue of waste Li-ion batteries | |
LI et al. | Regeneration of Al-doped LiNi0. 5Co0. 2Mn0. 3O2 cathode material by simulated hydrometallurgy leachate of spent lithium-ion batteries | |
Wang et al. | Role of Al on the electrochemical performances of quaternary nickel-rich cathode LiNi0. 8Co0. 1Mn0. 1− xAlxO2 (0≤ x≤ 0.06) for lithium-ion batteries | |
CN106104860B (en) | Positive electrode for nonaqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |