Trojanek et al., 1986 - Google Patents
A novel flow-through pneumatoamperometric detector for determination of nanogram and subnanogram amounts of nitrite by flow-injection analysisTrojanek et al., 1986
- Document ID
- 13085594880626232472
- Author
- Trojanek A
- Bruckenstein S
- Publication year
- Publication venue
- Analytical Chemistry
External Links
Snippet
A gas porous electrode structure that detects volatile electroactive species In a flowing liquid stream Is described and evaluated for its utility In flow Injection analysis. The electrode Is fabricated by depositing a porous gold layer on one side of a porous Teflon membrane. The …
- IOVCWXUNBOPUCH-UHFFFAOYSA-M nitrite anion   [O-]N=O 0 title abstract description 39
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—Specially adapted to detect a particular component
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/42—Measuring disposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
- G01N27/423—Coulometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/403—Cells and electrode assemblies
- G01N27/404—Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
- G01N27/4045—Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/28—Electrolytic cell components
- G01N27/30—Electrodes, e.g. test electrodes; Half-cells
- G01N27/333—Ion-selective electrodes or membranes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/4162—Systems investigating the composition of gases, by the influence exerted on ionic conductivity in a liquid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
- G01N27/04—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0006—Calibrating gas analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
- G01N30/14—Preparation by elimination of some components
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/62—Detectors specially adapted therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/18—Water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Schiavon et al. | Electrochemical detection of trace hydrogen sulfide in gaseous samples by porous silver electrodes supported on ion-exchange membranes (solid polymer electrolytes) | |
Janata et al. | Combination of flow injection analysis and voltammetry | |
Warner et al. | Electrochemical detection of peptides | |
Sawyer et al. | Polarography of gases. Quantitative studies of oxygen and sulfur dioxide | |
Pihlar et al. | Amperometric determination of cyanide by use of a flow-through electrode | |
Maclay et al. | Microfabricated amperometric gas sensors | |
Zen et al. | Flow injection amperometric detection of hydrazine by electrocatalytic oxidation at a perfluorosulfonated ionomer/ruthenium oxide pyrochlore chemically modified electrode | |
Dixon et al. | The control and measurement of ‘CO2’during fermentations | |
Hart et al. | A disposable amperometric gas sensor for sulphur-containing compounds based on a chemically modified screen printed carbon electrode coated with a hydrogel | |
Martin et al. | Membrane-dialzer injection loop for enhancing the selectivity of anion-responsive liquid-membrane electrodes in flow systems: Part 1. A sensing system for NOx and nitrite | |
Trojanek et al. | A novel flow-through pneumatoamperometric detector for determination of nanogram and subnanogram amounts of nitrite by flow-injection analysis | |
Buchta et al. | Electrochemical detector for liquid chromatography | |
Cardwell et al. | Photo-cured polymers in ion-selective electrode membranes: Part 2: A Calcium Electrode for Flow Injection Analysis | |
Przybylko et al. | The determination of aqueous ammonia by ion mobility spectrometry | |
Kramer et al. | Electrochemical Determination of Cholinesterase and Thiocholine Esters. | |
US5250171A (en) | Sensor for carbon monoxide | |
Mancy et al. | Analysis of dissolved oxygen in natural and waste waters | |
Huiliang et al. | Flow potentiometric and constant-current stripping analysis for mercury (II) with gold, platinum and carbon fibre working electrodes: Application to the Analysis of Tap Water | |
Cardwell et al. | Photo-cured polymers in ion-selective electrode membranes: Part 3. A Potassium Electrode for Flow Injection Analysis | |
Davison | Comparison of differential pulse and dc sampled polarography for the determination of ferrous and manganous ions in lake water | |
Pungor et al. | Application of ion-selective electrodes in flow analysis | |
Huang et al. | Electrochemical sensing of gases based on liquid collection interfaces | |
GB1499775A (en) | Coulometric detectors | |
Litong et al. | Determination of dissolved oxygen by catalytic reduction on Nafion—methyl viologen chemically modified electrode | |
Laitinen et al. | Potentiometric Determination of Oxygen Using the Dropping Mercury Electrode1 |