[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

Trojanek et al., 1986 - Google Patents

A novel flow-through pneumatoamperometric detector for determination of nanogram and subnanogram amounts of nitrite by flow-injection analysis

Trojanek et al., 1986

Document ID
13085594880626232472
Author
Trojanek A
Bruckenstein S
Publication year
Publication venue
Analytical Chemistry

External Links

Snippet

A gas porous electrode structure that detects volatile electroactive species In a flowing liquid stream Is described and evaluated for its utility In flow Injection analysis. The electrode Is fabricated by depositing a porous gold layer on one side of a porous Teflon membrane. The …
Continue reading at pubs.acs.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036Specially adapted to detect a particular component
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/42Measuring disposition or liberation of materials from an electrolyte; Coulometry, i.e. measuring coulomb-equivalent of material in an electrolyte
    • G01N27/423Coulometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors
    • G01N27/4045Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors for gases other than oxygen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/333Ion-selective electrodes or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4162Systems investigating the composition of gases, by the influence exerted on ionic conductivity in a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material
    • G01N27/04Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the impedance of the material by investigating resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0006Calibrating gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/48Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods

Similar Documents

Publication Publication Date Title
Schiavon et al. Electrochemical detection of trace hydrogen sulfide in gaseous samples by porous silver electrodes supported on ion-exchange membranes (solid polymer electrolytes)
Janata et al. Combination of flow injection analysis and voltammetry
Warner et al. Electrochemical detection of peptides
Sawyer et al. Polarography of gases. Quantitative studies of oxygen and sulfur dioxide
Pihlar et al. Amperometric determination of cyanide by use of a flow-through electrode
Maclay et al. Microfabricated amperometric gas sensors
Zen et al. Flow injection amperometric detection of hydrazine by electrocatalytic oxidation at a perfluorosulfonated ionomer/ruthenium oxide pyrochlore chemically modified electrode
Dixon et al. The control and measurement of ‘CO2’during fermentations
Hart et al. A disposable amperometric gas sensor for sulphur-containing compounds based on a chemically modified screen printed carbon electrode coated with a hydrogel
Martin et al. Membrane-dialzer injection loop for enhancing the selectivity of anion-responsive liquid-membrane electrodes in flow systems: Part 1. A sensing system for NOx and nitrite
Trojanek et al. A novel flow-through pneumatoamperometric detector for determination of nanogram and subnanogram amounts of nitrite by flow-injection analysis
Buchta et al. Electrochemical detector for liquid chromatography
Cardwell et al. Photo-cured polymers in ion-selective electrode membranes: Part 2: A Calcium Electrode for Flow Injection Analysis
Przybylko et al. The determination of aqueous ammonia by ion mobility spectrometry
Kramer et al. Electrochemical Determination of Cholinesterase and Thiocholine Esters.
US5250171A (en) Sensor for carbon monoxide
Mancy et al. Analysis of dissolved oxygen in natural and waste waters
Huiliang et al. Flow potentiometric and constant-current stripping analysis for mercury (II) with gold, platinum and carbon fibre working electrodes: Application to the Analysis of Tap Water
Cardwell et al. Photo-cured polymers in ion-selective electrode membranes: Part 3. A Potassium Electrode for Flow Injection Analysis
Davison Comparison of differential pulse and dc sampled polarography for the determination of ferrous and manganous ions in lake water
Pungor et al. Application of ion-selective electrodes in flow analysis
Huang et al. Electrochemical sensing of gases based on liquid collection interfaces
GB1499775A (en) Coulometric detectors
Litong et al. Determination of dissolved oxygen by catalytic reduction on Nafion—methyl viologen chemically modified electrode
Laitinen et al. Potentiometric Determination of Oxygen Using the Dropping Mercury Electrode1