Chang et al., 2021 - Google Patents
A mixed-pruning based framework for embedded convolutional neural network accelerationChang et al., 2021
- Document ID
- 13041728534929410434
- Author
- Chang X
- Pan H
- Lin W
- Gao H
- Publication year
- Publication venue
- IEEE Transactions on Circuits and Systems I: Regular Papers
External Links
Snippet
Convolutional neural networks (CNN) have been proved to be an effective method in the field of artificial intelligence (AI), and large-scale deploying CNN to embedded devices, no doubt, will greatly promote the development and application of AI into the practical industry …
- 230000001537 neural 0 title abstract description 20
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
- G06F17/5009—Computer-aided design using simulation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/544—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F7/00—Methods or arrangements for processing data by operating upon the order or content of the data handled
- G06F7/38—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
- G06F7/48—Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
- G06F7/52—Multiplying; Dividing
- G06F7/523—Multiplying only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/11—Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F15/00—Digital computers in general; Data processing equipment in general
- G06F15/76—Architectures of general purpose stored programme computers
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30587—Details of specialised database models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/30—Arrangements for executing machine-instructions, e.g. instruction decode
- G06F9/30003—Arrangements for executing specific machine instructions
- G06F9/30007—Arrangements for executing specific machine instructions to perform operations on data operands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F2217/00—Indexing scheme relating to computer aided design [CAD]
- G06F2217/78—Power analysis and optimization
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chang et al. | A mixed-pruning based framework for embedded convolutional neural network acceleration | |
Suda et al. | Throughput-optimized OpenCL-based FPGA accelerator for large-scale convolutional neural networks | |
Lee et al. | UNPU: An energy-efficient deep neural network accelerator with fully variable weight bit precision | |
Verhelst et al. | Embedded deep neural network processing: Algorithmic and processor techniques bring deep learning to iot and edge devices | |
Whatmough et al. | FixyNN: Efficient hardware for mobile computer vision via transfer learning | |
CN108090565A (en) | Accelerated method is trained in a kind of convolutional neural networks parallelization | |
Zhao et al. | Hardware acceleration for machine learning | |
Liu et al. | FPGA-NHAP: A general FPGA-based neuromorphic hardware acceleration platform with high speed and low power | |
Li et al. | Dynamic dataflow scheduling and computation mapping techniques for efficient depthwise separable convolution acceleration | |
Zhang et al. | Fitnn: A low-resource fpga-based cnn accelerator for drones | |
Lien et al. | Sparse compressed spiking neural network accelerator for object detection | |
Gupta et al. | Thrifty: Training with hyperdimensional computing across flash hierarchy | |
Yu et al. | Instruction driven cross-layer cnn accelerator for fast detection on fpga | |
Struharik et al. | CoNNa–Hardware accelerator for compressed convolutional neural networks | |
Yan et al. | FPGAN: an FPGA accelerator for graph attention networks with software and hardware co-optimization | |
Baischer et al. | Learning on hardware: A tutorial on neural network accelerators and co-processors | |
Shivapakash et al. | A power efficiency enhancements of a multi-bit accelerator for memory prohibitive deep neural networks | |
Wang et al. | Approximate multiply-accumulate array for convolutional neural networks on FPGA | |
Whatmough et al. | Fixynn: Energy-efficient real-time mobile computer vision hardware acceleration via transfer learning | |
Kim et al. | Binarized encoder-decoder network and binarized deconvolution engine for semantic segmentation | |
Li et al. | A power-efficient optimizing framework FPGA accelerator for YOLO | |
Yarnell et al. | Image Quantization Tradeoffs in a YOLO-based FPGA Accelerator Framework | |
Zhou et al. | Sagitta: An energy-efficient sparse 3D-CNN accelerator for real-time 3D understanding | |
Kashikar et al. | Lossless Neural Network Model Compression Through Exponent Sharing | |
Huang et al. | Structured term pruning for computational efficient neural networks inference |