Maricle et al., 1978 - Google Patents
Carbon foam fuel cell componentsMaricle et al., 1978
- Document ID
- 12921206130677652517
- Author
- Maricle D
- Nagle D
- Publication year
External Links
Snippet
In an electrochemical cell, such as a fuel cell, the gas distribution layer, which is the layer of material disposed directly behind and contiguous with the catalyst layer, is made from gas porous open cell carbon foam. Vitreous carbon foam is preferred. Vitreous carbon foam is …
- 239000000446 fuel 0 title abstract description 41
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
- Y02E60/522—Direct Alcohol Fuel Cells [DAFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1039—Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
- H01M4/926—Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0082—Organic polymers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/88—Processes of manufacture
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M2004/8678—Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lamy et al. | The direct ethanol fuel cell: a challenge to convert bioethanol cleanly into electric energy | |
Minh | High-temperature fuel cells | |
JP5013675B2 (en) | Electrocatalyst production method and electrode catalyst | |
Song et al. | How far are direct alcohol fuel cells from our energy future? | |
US7132191B2 (en) | Addressing one MEA failure mode by controlling MEA catalyst layer overlap | |
KR100717796B1 (en) | Cathode catalyst for fuel cell, membrane-electrode assembly for fuel cell comprising same and fuel cell system comprising same | |
De Souza et al. | Influence of the operational parameters on the performance of polymer electrolyte membrane fuel cells with different flow fields | |
Mathew et al. | Design, fabrication and testing of a direct methanol fuel cell stack | |
JP2793523B2 (en) | Polymer electrolyte fuel cell and method of operating the same | |
Metzger et al. | Experimental Studies of Graphene-Coated Polymer Electrolyte Membranes for Direct Methanol Fuel Cells | |
Maricle et al. | Carbon foam fuel cell components | |
Ruiz et al. | Low loading Pt catalysts based on Ni59Nb40Pt0. 6X0. 4 (X= Pd, Rh, Ru, Co) as anodes and Nafion XL membranes as support in PEMFCs | |
JP2002110190A (en) | Fuel cell | |
Jamb et al. | Polymer electrolyte membrane fuel cells for sustainable energy production | |
Yuan et al. | PEM fuel cells and their related electrochemical fundamentals | |
KR100705553B1 (en) | Process for forming catalyst layers on a proton exchange membrane within membrane electrode assembly for fuel cell | |
KR20070000252A (en) | Electrode for fuel cell and fuel cell system comprising same | |
JP2006040703A (en) | Catalyst carrying method of solid polymer fuel cell and membrane-electrode junction | |
Kunz et al. | Optimization of carbon-supported platinum catalysts for fuel cell electrodes. Final technical report October 79-October 80 | |
KR101125651B1 (en) | A membrane/electrode assembly for fuel cell and a fuel cell comprising the same | |
Goldsmith et al. | Three layer carbon based electrode | |
Weisbrod et al. | Modeling of Gaseous Flows within proton exchange membrane fuel cells | |
KR100728121B1 (en) | Direct oxidation fuel cell system | |
Savett | The characterization of new fluorinated ionomers for use in polymer electrolyte membrane (PEM) Fuel Cells | |
CN117895003A (en) | High Wen Jiasuan fuel cell integrating in-situ hydrogen production and power generation |